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ABSTRACT

 Research into crystalline matter has long been of interest to humanity, both in 

order to advance our society by creating new technologically useful materials and in 

order to better understand to nature of the properties we depend on for so much of our 

existing technology. In recent decades, solution-based crystal growth syntheses including 

hydrothermal and molten flux techniques have risen to the forefront of solid-state 

chemistry as superior methods of synthesizing new materials as single crystals ripe for 

structure determination and property measurements. 

 This work seeks to educate readers on recent advances in the hydrothermal realm 

of crystal growth: namely facile routes to the synthesis of transition-metal fluorides, 

uranium fluorides, and uranium oxides and compounds of related oxoanions (hydroxides, 

phosphates, phosphites). Work was done to characterize these new materials as 

completely as possible, and to work towards the goal of unraveling the structural 

contribution to magnetism in uranium compounds, namely how the coordination number 

of U(IV) affects the transition (or lack thereof) from the triplet to the nonmagnetic singlet 

ground state. 
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CHAPTER 1 

CHEMISTRY IN THE SOLID-STATE: PROBING THE STRUCTURE AND PROPERTIES OF 
CRYSTALLINE MATTER 
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 2 

Introduction 

 Solid-state materials have long been a source of fascination and wonder for 

humans; crystalline materials in particular have garnered a large amount of interest due to 

the gamut of properties they are capable of displaying. As we have advanced our 

understanding of the world we live in, we have also learned to harness the power of 

crystalline materials in order to transform our society. In today’s world, humans utilize 

crystals for a staggering variety of purposes ranging from those as simple as using 

crystalline clays to create works of art and colored pigments to paint houses to those 

more suited to high technology: rare earth magnets 1, piezoelectrics 2, and experimental 

solid-state batteries 3 to power our homes, devices, and lives. While some of the most 

basic (and useful) solid-state materials such as silicate clays and borax can literally be 

dug up out of the ground, materials with more advanced and desirable properties have to 

be made synthetically. Synthetic solid-state chemistry has had great longevity over the 

past decades, and will continue to be an active area of research due to a technological 

cycle: Newly synthesized materials with desirable properties (such as Li+ ion 

conductivity 4) drive industrial research. These application-driven researches seek to 

perfect the desired property, however simultaneously different researchers seek to 

understand the origin and mechanism of said property, which inevitably yields new 

materials with new properties, and the cycle begins again. 

 Historically, solid-state chemists have relied on one tried and true synthetic 

technique: the solid-state ceramic synthesis. 5 In a traditional solid-state synthesis, 

researchers heat an intimate, stoichiometric mixture of reagent powders to high 

temperatures. During the reaction, the reagent powders diffuse through each other and 
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react in the process, creating a fine product powder. This method has many strengths, 

including its scalability, and tendency to result in phase-pure products. The solid-state 

method is not without drawbacks. Solid-state reactions are diffusion-limited, and even at 

elevated temperature solid-state diffusion is slow, occurring usually on the scale of 

several days. This often results in solid-state reactions requiring multiple intermediate 

grindings between heatings to encourage mixing of the reactant powders. The result is 

that many solid-state reactions are not complete even after a full week of heatings. 

Furthermore, since impurity phases cannot readily be separated from fine powders, a 

successful solid-state reaction requires a careful stoichiometric mixture of reactants. This 

means that any error in weighing reactants will result either in an incomplete reaction 

(one starting material remains in excess), or the formation of an undesired side product 

(impurity). In either case, it is often best to consider such reactions a wash and begin 

afresh rather than try to correct the imbalance of reagents. Secondly, careful 

stoichiometric mixing requires the preparer to know the target composition, which for 

obvious reasons is prohibitive toward exploratory chemistry. 

 Despite these drawbacks, the solid-state route remains one of the most reliable 

methods for synthesizing inorganic materials, especially refractory materials that require 

very high (>1000° C) temperatures in order to react. Researchers have developed several 

variations on the traditional solid-state route in order to improve (usually speed up) 

reactions. These usually include co-precipitating reagents so as to produce a powder 

mixed on the atomic scale. 6 These powders can then be further reacted (possibly by 

ignition). Researchers can also employ mechano-chemical means, such as ball milling, to 

mechanically activate the reactant powders before heating. 7, 8 
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 These types of solid-state reactions all have one commonality: the addition of a 

large amount of thermal energy. This thermal energy is necessary to improve the rate of 

diffusion and to overcome activation energy barriers; coupled with the fact that these 

reactions occur over several days means that there is sufficient time and energy to push 

reactions to produce only thermodynamically favorable products. This is not necessarily a 

bad thing, as many thermodynamic products have high thermal stability which is 

necessary in many applications, however it severely limits the types of phases that can be 

obtained from a given solid-state reaction. 

 To obtain products that are favored kinetically, rather than thermodynamically, it 

is necessary to move towards different synthetic techniques which use shorter reaction 

times and less thermal energy. While this is intuitive, one cannot simply mix reagent 

powders a la traditional solid-state and simply heat at a cooler temperature for a shorter 

time, as there would not be enough heat to overcome the activation energy or enough 

time to allow for diffusion. In order to circumvent this problem, researchers have turned 

to solution-based methods. In solution-based reactions, the activation energy is lowered 

as reactant species become solvated and mingle freely with other reactants in the solution. 

This also serves to greatly reduce the amount of time and effort necessary to complete a 

given reaction. Whereas typical solid-state reactions require hours of grinding to produce 

an intimately mixed powder coupled with days (at a time) worth of heating, solution 

based methods are capable of utilizing ‘off the shelf’ reagents without further grinding or 

modification, and can be completed in as little as a few hours (although reaction times of 

one to two days are most common). 
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 In addition to speeding up reaction times, lowering reaction temperatures, and 

allowing for kinetically favorable products, solution based chemistry has another huge 

advantage over ceramic methods: the potential to grow high quality single crystals. 9 

Single crystals provide enormous benefits to researchers primarily due to recent 

advancements in X-ray diffraction technology: with modern instrumentation a skilled 

crystallographer can collect data and elucidate the atomic crystal structure of a novel 

compound in just a few hours after synthesis. Furthermore, many crystals have properties 

that are anisotropic and, therefore, having single crystals allows researchers to measure 

properties in different orientations to uncover the anisotropic nature of these properties 

(such as conduction or magnetism). The following work will detail the application of 

crystal growth to the synthesis of new transition metals and uranium containing fluorides 

and oxides. 

Crystal Growth Methods 

 In order to obtain a crystal from a solution, researchers rely on well-understood 

phenomenon: super-saturation. Super-saturation relies on the fact that the solubility of 

materials in a given solvent typically increases as the temperature of the solvent 

increases. This leads to the ability to dissolve more material (at elevated temperatures) in 

a solvent that should be possible at lower temperatures. As the material cools, this extra 

material stays in solution (at least temporarily) and the solution is termed super-saturated. 

As the super-saturated solution cools, crystallites can nucleate and grow using the ‘extra’ 

dissolved material as feedstock. 10–13 

 Over roughly the past two decades, two solution-based methods of crystal growth 

have emerged as extremely powerful tools for synthetic chemists to perform exploratory 
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chemistry: hydrothermal crystal growth and flux crystal growth. 14, 15 Although there are 

many differences between a flux and a hydrothermal reaction, the basic principles are the 

same: heat a mixture of reactants in the presence of a solvent, hold at the reaction 

temperature until the reactants have dissolved and are able to interact, and cool the 

mixture slowly enough to allow the solution to become super-saturated, crystals to 

nucleate, and grow. After the reaction, the solvent is removed leaving the product 

crystals. 

 In a flux reaction, the solvent system is an inorganic salt (termed the flux) with a 

(relatively) low melting point. The reactants are mixed with an excess of flux inside a 

reaction vessel, and the charge is heated in a furnace to above the melting point of the 

flux. At this point, the flux is a liquid and the reactants will dissolve in it. The reaction 

temperature must be high enough that the charge can be effectively cooled through the 

liquid range of the flux allowing crystallization before the flux solidifies. There are a 

huge number of possible fluxes with different properties which allow crystallization of 

many types of materials, however all fluxes should share a few common properties. A 

good flux will be cheap, low melting (m.p. <1000° C), able to dissolve the chosen 

reactants while remaining inert to the reaction vessel, and be able to be easily removed 

from the product. The best fluxes will be water soluble, allowing it to be simply washed 

away, leaving pure product crystals behind 14. 

 While flux growth has been extremely successful at synthesizing new compounds, 

it is not the only method of exploring phase space by crystal growth. Hydrothermal 

synthesis involves the use of superheated water contained in a sealed pressure vessel as 

the solvent system. Hydrothermal reactions rely on the fact that the solubility of normally 
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insoluble metals increases as the temperature of the system increases. Traditional 

hydrothermal chemistry involves taking advantage of water as a supercritical fluid. 

Above 374° C in a sealed system, water becomes supercritical: a fluid with the viscosity 

and ability to fill its container like a gas, with the dissolving power of a liquid. Such 

reactions are typically run at >500° C, and can reach as high as 700° C. These reactions 

rival the temperature ranges of many fluxes, but are systems with extremely high 

pressures, which can result in many interesting materials. 16–18 Understandably, doing 

chemistry in high-pressure vessels is expensive and can be dangerous if the vessel 

becomes overpressurized.  For that reason, chemists have developed softer hydrothermal 

methods, which are also more cost-effective. 

 The so-called mild hydrothermal method involves temperatures below the critical 

point of water, but still above the boiling temperature (100° C-374° C); but frequently 

remain below 250° C. Pressures generated in these systems are generally much less than 

those in traditional hydrothermal reactions, and so much smaller pressure vessels made of 

less exotic alloys can be employed, which ultimately cuts the cost of reactions 

significantly. Of course, the lower temperatures and subcritical nature of the water in a 

mild hydrothermal reaction means that the solvent has less dissolving power than a 

supercritical fluid. In order to get around this problem, researchers frequently utilize 

soluble salts and/or acid solvents to aid in the dissolution of precursors. The low cost and 

accessibility of mild hydrothermal chemistry means that it has enjoyed the attention of 

many researchers in recent years. 19–23 

 Although the temperature range between 300° C and 450° C are well within the 

capabilities of researchers’ equipment, it is not well explored. It has been hypothesized 
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that this is because researchers equipped only for mild hydrothermal reactions (PTFE 

lined vessels) cannot reach the regime beyond 250° C, and if researchers are equipped for 

supercritical temperatures, they typically ‘go big’ and ignore cooler temperature profiles. 

It has been hypothesized recently in the zur Loye group that it should be possible to 

obtain materials unique to this intermediate temperature range or at least obtain materials 

previously only synthesized at much higher temperatures. Thus, work has begun on 

exploring this intermediate range of hydrothermal chemistry. 

 There are many considerations to take into account when planning a hydrothermal 

reaction, and varying any of them can favor the formation of one product over another. 

The first two considerations to make are temperature and choice of reaction vessel. It has 

been observed in supercritical reactions that higher temperatures tend to result in more 

condensed framework materials, while lower temperatures tend to favor more open 

frameworks, however this does not necessarily hold true for mild conditions as there are 

reported cases of both open and closed framework materials resulting from mild reactions 

across a wide variety of temperatures.  In such cases where there is no clear trend, 

researchers must rely on chemical intuition to decide which reaction temperature is best 

for a given reaction. It is more straightforward to choose an appropriate reaction vessel: a 

good vessel will be inert to reactants and solvent (this is more important than in a flux 

reaction, as even a small reaction with the vessel could weaken the structural integrity, 

causing a blowout), as well as able to withstand the pressure and temperature of the given 

reaction conditions. Mild hydrothermal reactions are often carried out in standard acid 

digestion bombs. These bombs consist of a PTFE crucible insert that fits into a stainless 

steel sleeve, or autoclave. Reactants are loaded into the PTFE liner, which provides 
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excellent chemical inertness. The liner is loaded into the autoclave, which serves as the 

pressure vessel by sealing the PTFE liner and providing structural support. 

 These bomb reactors have two main drawbacks. The first is that organic 

molecules (used either as a solvent or a reactant) tend to become trapped in the liner. 

Once this happens, the offending organic is often impossible to remove completely and 

the liner must then be designated only for reactions containing that organic species. This 

problem is easily avoided by sticking to purely inorganic methods. The second drawback 

is that PTFE begins to become soft around 230° C, and by the time it reaches 250° C will 

begin to break down and become unusable. There is no real way around this, and 

reactions that aspire to higher temperatures must use alternative reaction vessels. 

 For this reason, supercritical reactions often utilize reaction vessels constructed 

from noble metal (like gold or silver) tubing. These vessels do not quite provide the 

inertness of PTFE across all conditions (usually strongly acidic conditions can cause 

problems), however they are suitable for most applications. These tubes provide excellent 

thermal stability as silver will not begin to soften until above 900° C. These types of 

vessels have one major drawback: they cannot contain significant pressure alone. In order 

to be viable as hydrothermal vessels, these tubes must be placed inside a secondary 

container, which is a pressure vessel rated to the appropriate pressure and temperature. 

For supercritical reactions, these vessels are commonly made of HASTELLOY C (HAST 

C), a stainless steel alloy with high strength and good inertness to the corrosive nature of 

supercritical water. These vessels are loaded with the reaction tubes, and must be 

backfilled with water to provide counterpressure to the reaction tubes.  
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 Once the temperature range and reaction vessel has been decided, all that remains 

is to decide upon appropriate starting materials. This of course greatly depends on the 

type of material being targeted, however not all precursors are suitable for all reactions. 

For example, nitrate and carbonate make excellent precursors for most hydrothermal 

reactions due to their solubility, however acetates and tartrates are only suitable for mild 

hydrothermal conditions as they will decompose and release gas under the heat required 

for supercritical reactions. Furthermore, tartrate is a fairly strongly chelating ligand, 

which can incorporate into products, while acetate is weakly chelating and likely will not. 

On the other side of the coin, oxides tend to make excellent precursors, as they do not 

introduce competing anions to the system, however the majority of transition metal 

oxides are quite insoluble under mild conditions and are only viable in the supercritical 

regime. 

 Ultimately, hydrothermal reactions are quite complex systems and researchers 

must rely a great deal on chemical intuition in order to decide upon the best set of 

conditions for a given reaction. Despite these challenges, hydrothermal synthesis is a 

rewarding area of research that often results in large single crystals perfectly suited for 

XRD and other property measurements. 

Solid State Fluorides 

 Solid-state fluorides are a diverse class of materials that are both similar and 

different from oxides. Fluorine is of a similar size and electronegativity to oxygen, and 

therefore metal coordination environments tend to be the same with fluorine as oxygen, 

however, the lower charge of fluorine coupled with its propensity to favor terminal 

positions (this is not to say fluorine can not bridge metal centers, this is often the case) 
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mean that fluorides can often exhibit interesting and unique structural arrangements. 24–27 

One such example of this is the so-called tailor effect 28 , which occurs when an oxide is 

fluorinated. This typically results in a high dimensional (3D or 2D) oxide being cut into a 

lower (2D or 1D) dimensional structure. 29  

 Beyond structural considerations, fluorine is an ion capable of effectively 

mediating superexchange between magnetic metal ions. 30 Hence fluorides have long 

been known as having rich magnetic properties. This being said, fluorine is slightly worse 

than oxygen at mediating a superexchange, which coupled with the unique structures 

found in fluorides means that researchers can expect to find quite different magnetic 

behavior in fluorides than are typically observed in oxide magnets. 

 Fluorine chemistry enjoyed a wealth of research in the early 1900’s, however 

most of it was halted by the 1960’s and 1970’s. Put quite simply, this decline in research 

was primarily due to the dangers presented by traditional fluorine chemistry. Historically, 

fluorides have been made by a method called fluorine bomb calorimetry. This involves 

placing reagents inside a bomb calorimeter with a completely fluorine atmosphere. The 

reagents are then ignited inside the calorimeter, revealing the fluoride products. This 

method is quite fruitful; fluorine will react readily with nearly every element on the 

periodic table with only a few notable exceptions (He and Ne). Despite the success of 

fluorine combustion chemistry, the dangers outweighed the success. F2 itself is highly 

corrosive, and would frequently corrode gas cylinders and tubing used to contain it unless 

it was treated properly. The combustion itself is highly exothermic and requires 

specialized equipment to safely contain, and HF gas (often a byproduct of the 

combustion, analogous to H2O in an oxygen combustion) is itself highly corrosive and 
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toxic. 31 Finally, to complete the problem, the fluoride products created by combustion 

tended to contain metals in extremely oxidized (unstable) states. This means that even 

when handled with care, these materials often detonated, injuring those attempting to 

study them. It is then no surprise that fluorine chemistry all but died by the 1970’s. 

 Today, there are still a few fluorine bomb calorimeters in use, however the 

technique is all but extinct. That is not to say that interest in solid-state fluorides has 

waned however. In recent years, chemists have adapted the modern crystal growth 

methods discussed previously to the synthesis of fluoride single crystals. These crystal 

growth methods focus on supplying fluoride species as available entities within the 

solution rather than on combustion, and therefore results in oxidation states which are far 

more reasonable and stable. In fact, when coupled with the mild hydrothermal approach, 

fluoride reactions can create reducing conditions which leads to the formation of metal 

fluorides with metals in reduced oxidation states. This is primarily achieved by including 

an organic reducing agent along with aqueous HF as an activator. 32, 33 Some could 

contend that the use of aqueous HF is still quite dangerous; while it is true that HF is 

acutely toxic 34, 35, typically very little is needed in a hydrothermal reaction and since the 

vessel is sealed to the point of being air tight, the researcher is never exposed to HF 

vapor. Furthermore, most of the corrosive F- ion is sequestered in the fluoride products, 

and any remaining F- can be neutralized by treating the product liquid with CaCl2, 

thereby rendering it safe. 

Uranium Chemistry 

In the early 20th century it was discovered that atoms of uranium could be split in 

a chain reaction, releasing enormous amounts of energy; thus sparking the atomic age of 
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humanity. Immediately there was an explosion in research on uranium and its chemistry. 

Much of the scientific research on uranium in these early days focused on three things: 

processing uranium ore for enrichment, enriching the natural uranium for use in reactors 

and weapons, and reprocessing spent fuel for re-use. These processes involved multiple 

chemical transformations from uranium ore (primarily U3O8 and UO2) into UF6 for 

enrichment, then reconversion to UO2 for use as fuel. Eventually concerns over the 

destructive ability of nuclear weapons led to the Nuclear Non Proliferation Treaty, and 

reprocessing of spent fuel was stopped, leading to an increase in the amount of generated 

nuclear waste (which was already reaching a staggering amount). Today, the chemistry of 

uranium processing is well understood, however we are left with an unfortunate legacy: 

hundreds of millions of tons of nuclear waste. 36, 37 Faced with the realization that 

‘sequestered’ waste from the original weapons and reactor programs have begun leaking 

after only a few decades, a new wave of research has begun trying to find a better way to 

deal with radioactive waste storage. 38  

 Beginning to tackle this problem begins with increasing our understanding of 

solid-state uranium chemistry, including structural and bonding motifs of uranium in the 

presence of various ions: primarily oxygen and fluorine. Uranium oxides are the primary 

naturally occurring uranium materials. Many uranium-bearing minerals exist, including 

pure oxides, hydroxides, and silicates. Understanding uranium oxides is also important 

because UO2 is still the primary form of uranium used in nuclear fuel. Uranium fluorides 

are of great industrial interest because uranium ores are converted to UF4, then UF6 (a 

gas) to be enriched.  
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 Explorations into the chemistry of uranium have revealed a rich redox chemistry 

that underlies a range of interesting properties. Uranium can exhibit oxidation states 

between +3 and +6, although only +4 and +6 are common in extended structures. 39 

U(VI) is by far the most common, often showing a bright neon yellow color with 

accompanying fluorescence. U(IV) is often green or brown (although other colors have 

been observed), is not luminescent, and is paramagnetic (5f2 system) until a transition to a 

nonmagnetic single state around 100 K. U(V) is rare, but not unheard of and can appear 

anywhere from yellow to red. U(V) is also (possibly) fluorescent and magnetic (5f1), and 

cannot exhibit the transition to a singlet state. Despite this, U(V) often displays van Vleck 

paramagnetism which is characterized by a loss of thermally populated excited states. 

Only simple binary U(III) materials are known to exist as extended structures, however 

U(III) has been hypothesized to have interesting magnetic behavior as it should not 

exhibit a nonmagnetic singlet state. Ultimately it has been found that the properties of 

uranium materials are extremely sensitive to the coordination environment of uranium. 40 

This is a theme that will be explored in detail later in this work. 

 U(VI), the most common oxidation state of uranium, exists nearly ubiquitously as 

the uranyl ([O=U=O]2+; UO2
2+) ion. 41–43 U(V) can also exist as a uranyl species (UO2

+), 

however it will not be discussed further. The uranyl ion consists of a uranium center 

double bonded to two oxide ligands (referred to from here on as uranyl oxygens) at 

roughly 180° apart. Since these are essentially a bond order of 2, the uranyl oxygens are 

relatively inert and do not often participate in additional bonding. Structures where uranyl 

oxides do participate in additional bonding are said to contain cation-cation interactions 

(CCI’s). 44–46 CCI’s are fairly rare, and so the uranyl group can be thought of a structure-
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directing agent. Since the uranyl oxides are inert, the uranium center has no choice but to 

heavily utilize its equatorial plane to fill its coordination sphere, and these equatorial 

ligands are the only ones capable of further bonding. Thus, the presence of uranyl groups 

heavily favors the formation of 1D chain and 2D sheet structural units. Fluoride ligands 

cannot participate in double bonding, and therefore cannot be present as uranyl anions. 

This means that U(VI) fluorides must either be non-uranyl species (rare), or contain 

mixed oxide/fluoride ions (with uranyl oxides and equatorial fluorides). 47, 48 Uranyl sheet 

structures are particularly common and form what are known as uranyl sheet-anions. 

Much work has been done on classifying uranyl materials by the topology of their uranyl 

sheet anions. 49–51 

 Uranyl materials are often (though not always) fluorescent, and have historically 

found use in niche applications that may seem odd today. For example, uranyl materials 

have been used in paint (due to their strong yellow color), photography (called 

uranotypes), and even in depression-era glassware (uranium glass). These niche 

applications have of course ceased due to the radioactivity and toxicity of uranium. 

Today, the only application for uranium is nuclear fuel, and uranyl compounds are the 

major component of nuclear waste. 

 The synthesis of uranyl compounds can be accomplished by a variety of routes. 

Uranyl materials readily form at high temperatures, so standard ceramic routes are 

straightforward. Uranyl compounds can also easily be synthesized via the flux crystal 

growth method, as many fluxes solubilize oxygen, which provides an oxidizing 

environment. Finally, it also possible to synthesize uranyl materials via hydrothermal 

reaction although some additional considerations must be made, especially when 
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attempting to incorporate fluorine. HF solutions are naturally slightly reducing, and 

U(VI) will readily reduce to U(IV) under these conditions. 52–54 In order to select U(VI) 

species in hydrothermal reaction, it is often best to perform growths under basic 

conditions as the hydroxide ion stabilizes the uranyl group. 

 U(IV) is larger than U(VI) and does not form uranyl bonds, so the bipyramidal 

geometries associated with uranyl chemistry are not as prevalent with U(IV) materials. 

U(IV) compounds tend to form irregular polyhedra with high coordination numbers (>8, 

although lower CN’s are known). Given this, U(IV) structures are not directed in an 

obvious way and can form utilizing a wide variety of structural motifs. It is not 

uncommon to see 3D U(IV) materials, although layered and chain materials are also 

prevalent. 

 While U(VI) materials range from bright fluorescent yellow to orange and red in 

color, U(IV) materials can be brown, or purple, but most often range from light pale 

green to an intense emerald green color. This intense coloration is due primarily to f-f 

electronic transitions arising from the 5f2 nature of U(IV). These unpaired f electrons 

provide U(IV) with a magnetic moment, that is strengthened (from calculated spin-only 

moment values) due to Russel-Saunders coupling. Despite the fairly strong moment 

(~3.55 μB) and greater f orbital extent than the lanthanides, magnetic ordering in uranium 

materials is extremely rare. This is due to the fact that excited f orbital states become 

thermally depopulated at low temperatures, leading to a pairing of f electrons and a 

nonmagnetic singlet state. It is suspected that the onset of the singlet state is extremely 

dependent on the coordination environment (and thus crystal electric field effects). 
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Characterization of New Materials 

 When in the business of making materials that have never before been made, it is 

prudent to characterize them as completely as possible (or risk a room-temperature super 

conductor sitting unknown on a benchtop)! The ability to adequately characterize a 

material begins with determining the actual chemical composition and structure of the 

material. Often, these can be determined simultaneously using single-crystal X-ray 

diffraction (SXRD) (although it is helpful to get some insight into the elemental makeup 

of crystals first). Using modern instrumentation and software, researchers can 

theoretically work up a reaction, select a suitable crystal, collect a full data set and solve 

the crystal structure all within 24 hours (of course it often takes longer). This is in stark 

contrast to the early days of diffraction when solving a structure could take several years 

(and constitute a thesis on its own). This dramatic improvement is primarily due to two 

things: improvement in instrumentation, and small but powerful computers able to refine 

structural data quickly. Computerization has certainly been a boon for instrument design, 

but the most advantageous improvements to instrumentation has been the development of 

high-intensity (and yet relatively low power) X-ray sources which can enable the 

detection of low intensity reflections quickly, and large, sensitive area-detectors with 

superior signal-to-noise ratios.  

 Despite this, SXRD is still not a routine measurement and it takes time to select 

suitable crystals and properly align them in the X-ray beam. Furthermore, structure 

solution still relies a great deal on chemical intuition. For these reasons, it is often 

inconvenient to jump to SXRD as the first step in characterizing new materials. Instead, 

powder X-ray diffraction (PXRD) can be a powerful tool for quickly identifying solid-
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state materials (if they have been previously made) and obtaining preliminary 

information regarding crystal symmetry and establishing if it is indeed a new material. 

Like SXRD, PXRD instruments benefit from low-power high-intensity X-ray sources, 

however they typically do not employ the same area-detectors as SXRD instruments. 

Instead, cutting-edge PXRD instruments utilize 1D strip detectors which can collect a 

publication quality diffraction pattern in under an hour, or a scan suitable for phase 

identification in as little as fifteen minutes. Furthermore, PXRD is an excellent method 

for confirming that bulk samples match the structures determined by SXRD.  

 Once the structure of a new material has been elucidated, it is up to the researcher 

to decide what property measurements should be performed, but in general as many 

characterizations as are appropriate should be done. Often the easiest measurements are 

optical spectroscopy measurements as they are performed using simple, relatively 

inexpensive instruments such as UV(Ultraviolet)/visible and FTIR (Fourier Transform 

Infrared) spectrometers. In cases where fluorescence is expected, a special UV/vis 

spectrometer (this instrument is set up as a standard UV/vis spectrometer, but with an 

additional detector to pick up emitted light) known as a fluorimeter can be used to 

quantify the fluorescent property. In general, these measurements rarely reveal earth-

shattering properties, however they can be used to confirm structural features that are 

ambiguous based on the XRD patterns. For example, IR spectroscopy can be used to 

differentiate between water and hydroxyl groups by looking for H-O-H bending modes, 

and UV/visible spectroscopy can be used to tell the presence of many transition metal 

ions based on characteristic d-d absorption bands. Furthermore, UV/vis data can be used 
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to estimate the band gap of materials, which could reveal semiconducting or metallic 

behavior. 

 In addition to optical spectroscopy, thermogravimetric analysis (TGA) often 

reveals unexpected thermal behavior, and will give a good indication of the thermal 

stability of the new material. TGA can help determine if it is possible to dehydrate a 

crystal, and can reveal otherwise hidden polymorphic structural transitions. Such crystal-

to-crystal transitions are fairly rare and often lead to a change in the observed properties. 

 In cases where a material contains ions with unpaired valence electrons (most 

transition metals, lanthanides, actinides where applicable), the magnetic properties can be 

probed using SQUID magnetometry. A SQUID (superconducting quantum interference 

device) magnetometer indirectly measures the magnetic moment of a material, and can 

perform moment versus temperature or moment versus field measurements. Typically, a 

suite of three measurements are performed for new materials: two moment versus 

temperature measurements, and one moment versus field measurement. The two moment 

versus temperatures measurements are called zero field-cooled (ZFC) and field-cooled 

(FC) measurements. These data are analyzed to give magnetic susceptibility versus 

temperature plots and provide insight into the presence and, if present, type of magnetic 

ordering in a material. The moment versus field (MvH) measurement is typically 

performed as a five-quadrant field sweep (start at zero field, increase to maximum field, 

decrease through zero to minimum field, increase through zero to maximum field) and is 

useful for determining subtle differences in ferro- and ferri- magnetic orderings. 

 Although SQUID magnetometry is a powerful technique, ultimately it is a bulk 

measurement and at best will give the sum of magnetic interactions in a substance. In 
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order to glean more precise information regarding the nature of magnetic ordering, 

neutron diffraction is necessary. Powder neutron diffraction (NPD) operates using the 

same principles as PXRD, however neutrons, unlike X-ray diffraction, possess a 

magnetic moment and therefore will diffract differently off electrons with spins of 

different orientations. This means that one can ‘solve’ a magnetic structure in much the 

same way as one can solve a crystal structure 55, 56, as electronic spins must follow the 

same symmetry laws as the atoms in a crystal lattice (although the magnetic spins are 

allowed to possess less symmetry than the atomic nuclei).  

 Beyond magnetic diffraction, using neutrons can be useful to glean structural 

information that may be difficult to obtain with X-rays. For example, X-ray scattering 

power has a direct relationship with the atomic number Z of an atom or ion. In principle 

this means that light atoms such as oxygen or hydrogen will be difficult to detect and 

their positions located, especially in the presence of heavy lanthanides or actinides. 

Neutron scattering lengths however do not follow the same rules and oxygen is quite easy 

to observe, no matter what other elements are present. 

 Ultimately, the goal of elucidating the structure and properties of new materials is 

to glean some information regarding structure-property relationships. Some of these 

relationships are well known: such as the fact that materials must crystallize in a non-

centrosymmetric space group in order to be piezoelectric. Other properties like magnetic 

ordering have ‘semi-quantitative’ rules such as the Goodenough-Kanamori-Anderson 

(GKA) rules, but do not always apply or attempt to explain the origin of the property. It is 

for this reason that basic research into crystalline materials and their properties must 

continue. 
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Outline 

 This work will cover the synthesis of several new materials and their measured 

properties as well as attempt to use structure to justify the properties that have been 

observed. This work is divided into three parts based upon the type of anion(s) that are 

present in each material. Part 1 will primarily discuss novel transition metal fluorides 

(Chapters 2 and 3), although some uranium fluorides are also discussed (Chapter 4). Part 

2 deals with mixed anionic oxyfluoride systems with Chapters 5 and 6 discussing 

transition metal materials and Chapter 7 focuses on new 1D uranyl oxyfluorides. Finally 

Part 3 delves into uranium oxides with Chapter 8 discussing K5U5O17(OH) and Chapters 

9 and 10 discussuranium polyoxophosphorous materials. Appendices A, B, and C will 

detail the synthesis and structure of three materials which are already known. 
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CHAPTER 2 
 

COMPOSITIONAL AND STRUCTURAL VERSATILITY IN AN UNUSUAL FAMILY OF 
ANTI-PEROVSKITE FLUORIDES: [CU(H2O)4]3[(MF6)(M’F6)]* 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

*Adapted with permission from Felder, J., B.; Yeon, J.; Smith, M.D.; zur Loye, H. –C. 

Inorg. Chem. 2016, 55, 7167-7175. © 2016 American Chemical Society
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Introduction 

 The chemistry of inorganic fluorides has been intensively pursued in order to 

create new mixed metal fluoride phases for a range of potential applications.1-3  This 

widespread research activity peaked during the middle of the twentieth century before 

declining rapidly by the early 1970’s.  In those days the synthetic approaches often relied 

on the use of highly oxidizing elemental fluorine gas or anhydrous hydrogen fluoride to 

create materials containing elements in very high oxidation states.4  This synthetic 

approach, while extremely successful, was ultimately tainted by the hazards of working 

with elemental fluorine and hydrogen fluoride gas, as well as by the inherent instability 

and frequently explosion prone products that resulted from this methodology.  This 

earned fluorine chemistry a reputation for being quite dangerous and the rapid decline of 

inorganic fluorine research by the 1970’s can be directly attributed to this reputation.  

 Despite the reputation of fluorine chemistry, there has been a slow resurgence in 

the number of groups conducting research focused on the synthesis of new inorganic 

fluorides in recent years, where the shift to safer synthesis methods that do not require the 

use of elemental fluorine, such as hydrothermal5-8 and flux9-12 crystal growth techniques, 

is largely responsible for this resurgence. Synthetic techniques such as these tend to result 

in compounds with less highly oxidized, and even reduced elements. In particular, many 

research groups have discovered that the simultaneous use of a mild hydrothermal 

method utilizing hydrofluoric acid as a fluorinating and complexing agent, together with 

an aqueous reducing agent, is highly successful for the synthesis of extended inorganic 

fluorides.13-21 
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 The coordination of transition metals by fluorine can lead to the formation of 

complex anions, which may be used as structural building blocks in the formation of 

complex three-dimensional networks. The use of complex ions, furthermore, can result in 

interesting variations on known structure types, such as the perovskite structure, as 

described in this work. The simple cubic perovskite structure is best described by the 

ABX3 stoichiometry, where A and B typically are monoatomic cations, while X is an 

anion, most commonly O2-, although halide (including fluoride) perovskites are also quite 

numerous.22-26 In the latter case, however, the small -3 charge resulting from the three 

halide ions per formula unit greatly limits the choice of cations that can be used in pure 

halide perovskites, such as CsNiF3, as the sum of their oxidation states cannot exceed +3. 

The introduction of complex ions formed from metal fluoride coordination polyhedra 

greatly increases the variety of species that can be introduced into the family of fluoride 

perovskites, which opens up compositional opportunities along with increased potential 

for realizing specific physical properties in these materials.  

 Perovskites have been and continue to be studied extensively for optical 

properties,27 piezoelectricity,28 superconductivity,29 ferromagnetism,30 as well as other 

complex magnetic behaviors,31 and the multitude of structural variations that they can 

exhibit. For example, the simple cubic single perovskite (ABX3) can be modified in a 

number of different ways, including by changing the sizes of the A and B cations to 

induce monoclinic32-35 tetragonal36 or hexagonal37 distortions, by doubling the formula to 

A2B2X6 and placing additional cations into the structure to form A2-xA’xB2-yB’yX6 

double31 perovskites or similar triple and quadruple perovskites,38-40 by using mixed X 

and X’ anions, and by introducing complex ions onto the traditional A, B, or X sites. The 
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structural anti designation is of particular importance to this work. The anti designation 

of the perovskite,41, 42 or any other structure for that matter, is given when the positions of 

the cations and anions are reversed in the structure. Thus, in an anti-perovskite ABX3 

structure, the A and B sites that normally hold the cations are occupied by anions, while 

the X site that normally holds the anion is occupied by cations. Anti-perovskites have 

been shown to exhibit interesting magnetism43 and superconductivity44 and the 

perovskites reported in this work represent unusual examples of a complex anti-

perovskite structure type. 

 Herein we report on a family of anti-perovskites of the form [Cu(H2O)4]3(M1-

xM’xF6)2 and report a new synthetic approach for the anti-perovskite phases 

[Cu(H2O)4]3(VF6)2 2.1, [Cu(H2O)4]3(CrF6)2 2.2, [Cu(H2O)4]3(MnF6)2 2.3, and 

[Cu(H2O)4]3(FeF6)2 2.4,45, 46 as well as two novel bi-metal compositions, 

[Cu(H2O)4]3(FeF6)(VF6), 2.5 and [Cu(H2O)4]3(Fe1.09F6)(Cr0.91F6) 2.6.  The synthesis, 

structures and magnetic properties are discussed.   

 Experimental 

Materials and Method 

 V2O5 (Alfa Aesar, 99.6%), CrF3•xH2O (Alfa Aesar), MnF3 (Alfa Aesar, 98%), 

FeF3 (Alfa Aesar, 99%), Cu(CH3CO2)2•H2O (Sigma Aldrich, 98+%), CuF2 (Alfa Aesar, 

99.5%), NaF (Alfa Aesar, 99%), and HF (EMD, 48%) were used as received. 

Caution: Hydrofluoric acid is acutely toxic and corrosive, and must be handled with extreme caution and 

while using appropriate protective gear. If contact with the liquid or vapor occurs, proper treatment 

procedures should immediately be followed and medical attention should be immediately sought.47-49 

  Compound 1 was synthesized using a 1:8 molar ratio of vanadium (V) oxide to 

copper (II) acetate. 2 molar equivalents of sodium fluoride were added as a mineralizer. 
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Compounds 2.2, and 2.4 were synthesized using a 2:3 metal precursor to copper (II) 

acetate ratio. The exact metal precursors are listed in Table 2.1. The synthesis for 2.3 was 

identical except copper (II) fluoride was used instead of copper (II) acetate. The two bi-

metal phases 2.5 and 2.6 were synthesized using a 1:1:3 iron (III) fluoride to metal 

precursor to copper ratio. Table 2.1 lists the exact species and quantities used for all 

syntheses.  

For all reactions the solid reagents were combined with 1 mL of deionized water 

in a 23 mL PTFE vessel. 1 mL of hydrofluoric acid was added slowly to the vessel after 

all other reagents had been combined. The vessel was then sealed in a stainless steel 

autoclave and placed inside a programmable oven. The oven was ramped from room 

temperature to 200° C at a rate of 8.0° C/minute, dwelled for 24 hours, followed by slow 

cooling at a rate of 0.1° C/minute to 40° C, at which point the oven was shut off and 

cooled naturally to room temperature. Once cool, the autoclave was removed and the 

vessel was carefully opened. The product crystals were isolated by decanting the mother 

liquor followed by vacuum filtration. The solid product was washed thoroughly with 

deionized water and acetone, respectively. The resulting liquid waste was treated with 

calcium chloride to precipitate the fluoride ions as calcium fluoride. 

Single-Crystal X-Ray Diffraction 

X-ray diffraction intensity data from block shape crystals of 2.1, 2.2, and 2.4 were 

measured at room temperature on a Bruker SMART APEX diffractometer (Mo Kα 

radiation, λ = 0.71073 Å). The raw area detector data frames were processed with 
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Table 2.1: Synthetic Precursors for Compounds 2.1-2.6 
 

 

 

 
 

 

 

Compound Reagent 1 Amount Reagent 2 Amount Copper Source Amount 
1 V2O5 1 mmol NaF 2 mmol Cu(CH3CO2)2 8 mmol 
2 CrF3 • xH2O 2 mmol N/A N/A Cu(CH3CO2)2 3 mmol 
3 MnF3 2 mmol N/A N/A CuF2 3 mmol 
4 FeF3 2 mmol N/A N/A Cu(CH3CO2)2 3 mmol 
5 V2O5 ½ mmol FeF3 1 mmol Cu(CH3CO2)2 3 mmol 
6 CrF3 • xH2O 1 mmol FeF3 1 mmol Cu(CH3CO2)2 3 mmol 

31 
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SAINT+. An absorption correction based on the redundancy of equivalent reflections was 

applied to the data with SADABS.50 The reported unit cell parameters were determined 

by least-squares refinement of a large array of reflections taken from each data set. 

Difference Fourier calculations and full-matrix least-squares refinement against F2 were 

performed with SHELXTL.51 

X-ray intensity datasets for 2.3, 2.5, and 2.6 were collected at 100(2) K using a 

Bruker D8 QUEST diffractometer equipped with a PHOTON 100 CMOS area detector 

and an Incoatec microfocus source (Mo Ka radiation, λ = 0.71073 Å).41 The detector was 

operated in the shutterless mode with an additional low-angle ‘fast-scan’ to account for 

overtopped pixels. Data collections covered the full sphere of reciprocal space to 2θmax = 

72.8º (d = 0.60 Å), with an average reflection redundancy of at least 8.0. The raw area 

detector data frames were reduced and corrected for absorption effects using the SAINT+ 

and SADABS programs. 50 Final unit cell parameters were determined by least-squares 

refinement of large sets (> 9800) of reflections taken from the data sets. An initial 

structural model was obtained with SHELXS using direct methods.51 Subsequent 

difference Fourier calculations and full-matrix least-squares refinement against F2 were 

performed with SHELXL-201451 using the ShelXle interface.51 

The compounds are isostructural and crystallize in the space group P-1 (No. 2) of 

the triclinic system. No indication of an alternative (larger) unit cell was observed from 

careful inspection of indexed data frames and precession images. The asymmetric unit of 

the structures consist of three independent copper atoms and two independent metal atom 

sites, or mixed metal (M/M’) atom sites (for 2.5 and 2.6), all located on crystallographic 
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inversion centers, six fluorine and six oxygen and twelve independent hydrogen atoms, 

all located on general positions. Alternatively, the asymmetric unit consists of half each 

of three Cu(H2O)4
2+ cations and half each of two (M,M’)F6

3- anions, with the cations and 

anions located on crystallographic inversion centers. After identification of the basic 

structure, each dataset was evaluated for metal atom site mixing as follows. The metal 

atoms in both independent (M,M’)F6
3- anions (site M1 = Wyckoff position 1c, site M2 = 

position 1f) were initially set as either (a) 100% iron or (b) 100% V or Cr. The site 

occupation factors (sofs) for the (a) “Fe” or (b) “V or Cr” sites were then refined. Model 

(a) resulted in a significant decrease from 100% occupancy by iron (average over both 

independent sites ca. 0.92(1) for the 2.5 dataset and 0.95(1) for the 2.6 dataset). For 

model (b) the M’ sof refined to greater than 100% (ca. 1.10(1) for M’ = V and 1.06(1) for 

M’ = Cr). These observations were interpreted as statistical Fe/M’ site mixing occurring 

on both independent anion sites. For the final refinements, the total site occupancy was 

constrained to one and the ratio of Fe to V or Cr was refined for each site. This yielded 

physically sensible values and is therefore preferred to manually fixing both sites at 50% 

Fe / 50% M’. No deviation from full occupancy was observed for the three independent 

copper atoms sites in either dataset. All non-hydrogen atoms were refined with 

anisotropic displacement parameters. Hydrogen atoms were located in difference maps 

and refined isotropically with O-H distances restrained to be approximately equal 

(SHELX SADI instructions). The largest residual electron density peaks and holes in the 

final difference maps are: 2.3 dataset, +0.52 and -0.57 e-/Å3, located 0.58 Å from F3 and 

0.69 Å from Cu2, respectively, 2.5 dataset, +0.43 and -0.59 e-/Å3, located 0.63 Å from 

V1/Fe1 and 0.59 Å from Cu2, respectively, 2.6 dataset, +0.59 and -0.57 e-/Å3, located 



www.manaraa.com

 

 34 

0.65 Å from Cu1 and 0.72 Å from Cu3, respectively. Table 2.2 gives structure refinement 

details for all reported compounds 

Powder X-Ray Diffraction 

 Powder X-ray diffraction (PXRD) data were collected on polycrystalline samples 

ground from the product single crystals. Data were collected on a Rigaku Ultima IV 

diffractometer utilizing Cu Kα radiation. The data were collected over the range 10° to 

65° 2θ, with a step size of 0.02°. 

Optical Properties 

UV/visible spectra were recorded using a Perkin-Elmer lambda 35 UV/visible 

scanning spectrophotometer used in diffuse reflectance mode equipped with an 

integrating sphere. Diffuse reflectance spectra were recorded in the 200 nm – 900 nm 

range. Reflectance data was converted to absorbance by the instrument via the Kubelka-

Munk function.52 All optical measurements were performed on polycrystalline powders 

obtained by grinding the product single crystals. 

Energy Dispersive Spectroscopy (EDS) 

 EDS was performed on product single crystals using a Tescan Vega-3 SEM 

equipped with a Thermo EDS attachment. The SEM was operated in low-vacuum mode. 

Crystals were mounted on an SEM stud with carbon tape, and analyzed using a 30 kV 

accelerating voltage and a 20 second accumulating time.
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Table 2.2: Crystallographic Data for Compounds 2.1-2.6 

Compound 1 2 3 4 5 6 
Empirical Formula [Cu(H2O)4]3(VF6)2 [Cu(H2O)4]3(CrF6)2 [Cu(H2O)4]3(MnF6)2 [Cu(H2O)4]3(FeF6)2 [Cu(H2O)4]3(FeF6)(VF6) [Cu(H2O)4]3(Fe1.09F6)(V0.91F6) 
Color Green Green Dark Red Blue Green Green 
Crystal Size (mm) 0.24 x 0.16 x 0.08 0.20 x 0.16 x 0.08 0.14 x 0.10 x 0.08 0.32 x 0.16 x 0.12 0.22 x 0.20 x 0.18 0.22 x 0.18 x 0.16 
Formula Weight (g/mol F.U.) 736.69 738.81 744.69 746.51 741.65 743.01 
Temperature 294(2) K 294(2) K 100(2) K 294(2) K 100(2) K 100(2) K 
Wavelength 0.71073 Å 0.71073 Å 0.71073 Å 0.71073 Å 0.71073 Å 0.71073 Å 
Crystal System Triclinic Triclinic Triclinic Triclinic Triclinic Triclinic 
Space Group P-1 P-1 P-1 P-1 P-1 P-1 
Unit Cell Parameters: 
a (Å) 7.5088(2) 7.4725(2) 7.5023(3) 7.5077(4) 7.4684(4) 7.4527(3) 
b (Å)  7.6077(2) 7.5977(2) 7.5151(3) 7.6132(4) 7.5767(3) 7.5692(4) 
c (Å) 8.1254(2) 8.1009(2) 8.1081(3) 8.1249(4) 8.0918(4) 8.0839(4) 
α (°) 88.9660(10) 89.3160(10) 88.4530(11) 89.1900(10) 88.8324(14) 88.9921(14) 
β (°) 89.8530(10) 89.9300(10) 89.8350(12) 89.8460(10) 89.9075(15) 88.9745(14) 
γ (°) 87.1710(10) 87.13 87.3294(12) 87.0530(10) 86.8817(14) 86.8181(15) 
Volume (Å3) 463.52(2) 459.31(2) 456.48(3) 463.74(4) 457.11(4) 455.25(4) 
Z 1 1 1 1 1 1 
Density (calculated) 2.639 Mg/m3 2.671 Mg/m3 2.709 Mg/m3 2.673 Mg/m3 2.694 Mg/m3 2.710 Mg/m3 
Absorption Coefficient 4.523 mm-1 4.729 mm-1 4.952 mm-1 5.077 mm-1 4.870 mm-1 4.989 mm-1 
Reflections Collected 6379 6304 31127 6300 36030 35705 
Independent Reflection 2284 2270 4900 2283 4469 4456 
Data/Restraints/Parameters 2284/0/188 2270/0/188 4900/66/188 2283/0/188 4469/66/190 4456/66/190 
Goodness-of-Fit on F2 1.088 1.076 1.014 1.087 1.089 1.072 
Final R Indices R1 = 0.0283 

wR2 = 0.0805 
R1 = 0.0279 
wR2 = 0.0801 

R1 = 0.0266 
wR2 = 0.0485 

R1 = 0.0259 
wR2 = 0.0700 

R1 = 0.0202 
wR2 = 0.0457 

R1 = 0.0207 
wR2 = 0.0463 

Largest diff. Peak and Hole 0.799 and  
-0.789 e-/Å3 

0.728 and  
-1.015 e-/Å3

0.516 and  
-0.573 e-/Å3

0.681 and 
-1.031 e-/Å3

0.431 and 
-0.589 e-/Å3

0.591 and 
-0.573 e-/Å3

35 
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Magnetism 

Magnetic property measurements were performed on a Quantum Design MPMS 3 

SQUID magnetometer. Field cooled (FC) and zero-field cooled (ZFC) magnetic 

susceptibility measurements were taken from 2K – 300K in an applied field of 0.1 T. 

Magnetization measurements were taken at 2K with the applied field sweeping from -5 T 

– 5 T. The raw data was corrected for radial offset and sample shape effects according to

the method described by Morrison.53 All magnetic data was collected on polycrystalline 

powders obtained by grinding the product single crystals. 

Results and Discussion 

Synthetic Considerations 

The synthesis of single crystals of the six compositions was achieved using a 

variation of the method used by Kummer and Babel to synthesize phases 2.1, 2.2, and 

2.4,45 and quite different from the one used to synthesize phase 2.3,46 which involved 

dissolving the reactants in hot HF and evaporating the liquid until crystallization 

occurred. Our method provides a way to synthesize all of the reported compounds (2.1-

2.6) without the necessity of varying the temperature profile. In addition, the method of 

synthesizing compound 2.3 is greatly improved, as there is no risk of exposure to HF 

vapor during the synthesis. While the previous method for synthesizing 2.3 was indeed 

successful, it is our experience that the mild hydrothermal method described in this paper 

produces higher quality crystals in greater yield than did the evaporative technique 

reported previously. 
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All product crystals were formed in excellent yield, greater than 90%. The 

reducing conditions of the synthesis created by the interplay between HF and the acetate 

ion was sufficient to produce metallic copper as a small impurity. The product crystals 

are easily large enough to be physically separated; alternatively, the copper metal 

impurity can readily be dissolved in concentrated nitric acid without substantially 

affecting the product crystals.  

Energy Dispersive Spectroscopy (EDS) and Powder X-Ray Diffraction (PXRD) 

EDS was performed for the purpose of qualitative non-destructive elemental 

analysis. Elemental analysis confirmed the presence of all metals in the reported phases. 

This was especially important for compounds 2.5 and 2.6, which are visually 

indistinguishable from 2.1 and 2.2. EDS confirmed the presence of V, Fe, and Cu in 2.5 

as well as Cr, Fe, and Cu in 2.6, demonstrating that these crystals contained mixed 

vanadium and iron and mixed chromium and iron, respectively.  

Powder diffraction patterns of the six compositions were collected and compared 

to the calculated powder pattern generated from the respective crystallographic 

information (CIF) files. The data matched the generated pattern, as shown in Figure 2.1, 

which illustrates the powder patterns in comparison with the calculated data. 

Crystal Structure 

All six reported compounds are isostructural with only minor differences in unit 

cell parameters, bond lengths and angles. Compound 2.3 is slightly different in that it 

contains a second Jahn-Teller ion (Mn3+), in addition to the Jahn-Teller distorted copper  
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Figure 2.1: PXRD Patterns for Compounds 2.1-2.6. The PXRD patterns of materials 
2.1-2.6 (red) compared to their respective CIF’s (green). The experimental and calculated 
patterns are in excellent agreement with no extra peaks, indicating phase purity and a 
high degree of crystallinity. 
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ion that is present in all six materials. The presence of a second Jahn-Teller ion does not 

significantly impact the structure however. Compounds 2.5 and 2.6 are structurally 

distinct due to the presence of two types of complex metal anions. The crystal structure 

will be described in a general fashion, as it is the same for all six compounds, and the 

description will emphasize its connection to the perovskite structure type. Compounds 

2.5 and 2.6 be discussed in detail to describe the positions of the different metal centers 

within the crystal structure. Table 2.3 lists selected bond distances for the reported 

compounds. 

 The structure is built up of complex ions that are formed from metal coordination 

polyhedra. The complex ions form units that are denoted ‘A’, ‘B’, and ‘X’, to correspond 

with the crystallographic sites typically associated with the perovskite structure. In this 

example, the A and B units are composed of the same ion, which is uncommon among 

perovskites; typically A is larger than B.  

 The X site is composed of [Cu(H2O)4]2+ square planar ions, of which an example 

is shown in Figure 2.2. These square planes are arranged in a fashion similar to how 

oxide ions are arranged in a cubic perovskite structure, the difference being the X site 

complexes are much further apart (nearest neighbor coppers ~5.2 – 5.5 Å) than are close 

packed oxide ions. Nevertheless, the arrangement of X complexes forms large octahedral 

holes in which the B site (MF6)3- ions sit. Figure 2.3 is a representation of the local inner-

sphere coordination of the B site metal. The B site ions are coordinated to each of the six 

surrounding X site complexes through a bridging fluoride, which forms a large 

octahedron around the B site anion. Figure 2.4 shows an example of the large octahedron 

created by the outer coordination sphere of the B site metal. This is consistent with the 
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six-coordinate environment of the B site in a typical perovskite structure. 

The large (MF6)[Cu(H2O)4)]6 octahedra are corner shared to each other through 

the X site copper complexes forming infinite M-F-Cu-F-M chains that run in all three 

dimensions, forming a network of corner sharing octahedra. Each X site is shared by two 

B site ions, so the octahedra can be written (MF6)[Cu(H2O)4)]6/2
3+, forming a cationic 

framework. This framework of octahedra has large voids in the center of a cube formed 

by eight cone.cted octahedra. Figure 2.5 shows the three-dimensional framework of the 

perovskite structure. The A site (MF6)3- ions sit within these voids, and balance the 

positive charge of the BX3 framework. As previously discussed, the A and B sites are 

occupied by the same type of complex ion (MF6)3-, which is rare in perovskites. A 

structural depiction of this ion can be reviewed in Figure 2.2. In a typical cubic 

perovskite, the A site is coordinated to 12 oxide ions, which are part of the B site 

octahedra. In this case, the copper X site complexes are too far from the A site ions to 

form true bonds, however there are hydrogen bonding interactions between the hydrogen 

atoms of the [Cu(H2O)4)]2+ complex and the fluoride ions of the A site (MF6)3- ions. In 

fact, each A site ion is hydrogen bonded to 12 unique X site complexes: the same X site 

ions that they would be bonded to in a typical perovskite. Figure 2.6 illustrates the twelve 

X complexes that the A site is hydrogen bonded to. Figure 2.7 shows an overall structural 

representation of the reported materials in comparison to a typical cubic perovskite. 

Compounds 2.5 and 2.6 are isostructural with 2.1-2.4, however they possess two 

different trivalent complex anions, MF6
3- and M’F6

3-.  Due to the minute difference in 

ionic radii between V3+ and Fe3+, and Cr3+ and Fe3+, there is no segregation of the 

different cations to different crystallographic sites. Instead, the A and B sites contain 
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Table 2.3: Interatomic Distances (Å) in Compounds 2.1-2.6 

*X = O,F

Compound 1 2 3 4 5 6 
Cu – X* 
Cu(1) – O(1) 1.9772(15) 1.9789(15) 1.9626(9) 1.9802(12) 1.9726(8) 1.9768(8) 
Cu(1) – O(2) 1.9841(16) 1.9778(16) 1.9771(10) 1.9811(13) 1.9861(7) 1.9837(8) 
Cu(1) – F(1) 2.2034(12) 2.2034(12) 2.2199(7) 2.2006(10) 2.1903(6) 2.1887(6) 
Cu(2) – O(3) 1.9405(16) 1.9353(16) 1.9586(10) 1.9369(13) 1.9398(8) 1.9383(8) 
Cu(2) – O(4) 1.9680(16) 1.9634(17) 1.9678(10) 1.9665(13) 1.9685(7) 1.9660(8) 
Cu(2) – F(3) 2.4026(12) 2.426(1) 2.3294(8) 2.4139(10) 2.3928(6) 2.4059(6) 
Cu(3) – O(5) 1.9469(15) 1.9514(16) 1.9426(9) 1.9505(12) 1.9477(7) 1.9506(8) 
Cu(3) – O(6) 1.9760(16) 1.9667(16) 1.9848(10) 1.9712(13) 1.9771(8) 1.9730(8) 
Cu(3) – F(2) 2.3275(12) 2.3268(12) 2.3358(8) 2.3294(10) 2.3185(6) 2.3193(6) 
M – F Monometallic Phases Bimetallic Phases 

M(1) – F(1) 1.8932(12) 1.8900(12) 1.8178(7) 1.8980(10) V: 1.8931(6) Cr: 1.9382(6) 
Fe: 1.8931(6) Fe: 1.8907(6) 

M(1) – F(2) 1.9484(11) 1.9208(11) 1.9064(7) 1.9471(10) V: 1.9464(6) Cr: 1.9382(6) 
Fe: 1.9464(6) Fe: 1.9382(6) 

M(1) – F(3) 1.9979(12) 1.9373(11) 2.1122(8) 1.9748(10) V: 1.9923(6) Cr: 1.9616(6) 
Fe: 1.0023(6) Fe: 1.9616(6) 

M(2) – F(4) 1.9167(13) 1.9036(13) 1.8468(8) 1.9204(11) V: 1.9173(6) Cr: 1.9119(6) 
Fe: 1.9173(6) Fe: 1.9119(6) 

M(2) – F(5) 1.9315(12) 1.9054(12) 1.8701(7) 1.9269(10) V: 1.9268(6) Cr: 1.9165(6) 
Fe: 1.9268(6) Fe: 1.9165(6) 

M(2) – F(6) 1.9786(13) 1.9227(12) 2.0930(8) 1.9584(10) V: 1.9730(6) Cr: 1.9432 (6) 
Fe: 1.9730(6) Fe: 1.9432(6) 

41 
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Figure 2.2: Local Coordination of Cu2+ in Compounds 2.1-2.6. The local coordination 
environment of Cu2+ in the title compounds. The copper ion is coordinated by four 
neutral aqua ligands, giving the complex an overall 2+ charge. The [Cu(H2O)4]2+ 
complex comprises the X site in the title perovskite. Copper is shown in blue, oxygen in 
red, and hydrogen in black. 
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Figure 2.3: Local Coordination of the M3+ Ion in Compounds 2.1-2.6. The local 
coordination environment of the A and B site metals. In all cases (except for 2.3, which 
shows an elongation of the axial bonds due to the Jahn-Teller effect) the metals are 
present in regular octahedra. This coordination polyhedron represents the inner 
coordination sphere, and has an overall 3- charge. M3+ is shown in dark green and 
fluorine is shown in bright green. 
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Figure 2.4: B Site Coordination in Compounds 2.1-2.6. The B site metal ion within its 
outer coordination polyhedron (shown as the green octahedron). Each (MF6)3- octahedron 
is coordinated to six X site copper complexes via a fluorine bridge. The long Cu-F bonds 
are explained by the Jahn-Teller distorted d9 Cu2+ ion. The B site metal is shown in dark 
green, copper in blue, oxygen in red, and fluorine in bright green. Hydrogen atoms are 
omitted for clarity. 
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Figure 2.5: The BX3 Cationic Framework of Compounds 2.1-2.6. The cationic 
framework in the reported materials. The B site octahedra are corner shared via the 
copper X site complexes. The framework forms large voids in the center of four 
octahedra. Each copper complex is shared by two octahedra, and the framework has an 
overall 3+ charge. The B site metal is shown in dark green, copper in blue, oxygen in red, 
and fluorine in bright green. Hydrogens are omitted for clarity.
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Figure 2.6: 12-Coordinate Second-Sphere Coordination of the A Site of Compounds 
2.1-2.6. The A site metal anion surrounded by twelve square planar copper X site 
complexes. Each fluorine in the A site ion is hydrogen bonded to two separate X site 
ions, bringing the outer sphere coordination number of the A site to 12, consistent with a 
cubic perovskite. Hydrogen bonds are shown in bright green for clarity. The A site metal 
is shown in teal, copper square planar complexes are shown as blue squares, oxygen is 
shown in red, fluorine in bright green, and hydrogen in black.
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Figure 2.7: Comparison of Compounds 2.1-2.6 with a Cubic Perovskite. An overall 
representation of the reported anti-perovskites (left) in comparison to a typical cubic 
perovskite (right).  Left: B site ions are shown as large green octahedra, A site ions are 
small teal octahedra, and X site ions are blue spheres. Oxygen is shown in red, fluorine in 
bright green. Hydrogen has been omitted for clarity. Right: A cation shown in grey, B 
polyhedra in blue, and oxygen in red. 
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roughly equal quantities of the two metals (V and Fe for 2.5, and Cr and Fe for 2.6). 

Compounds 2.5 and 2.6 can be written as [Cu(H2O)4]3(M2-xM’xF6)2 to take into account 

the site mixing. In compound 2.5, M = Fe and M’ = V where x = 0.995. In this case there 

is a nearly equal amount of V and Fe in the structure. There is a slight excess of 

vanadium on the M(1) (B) site, and conversely a slight excess of iron on the M(2) (A) 

site. For compound 2.6, M = Fe and M’ = Cr, where x = 0.91, indicating a slight excess of 

iron across both crystallographic metal sites.  

Optical Properties 

 The UV/visible spectra were interpreted using the Tanabe-Sugano diagrams54 for 

d2 (V3+), d3 (Cr3+), d4 (Mn3+), and d5 (Fe3+) metal complexes. Cu2+ is d9 with only one 

allowed electronic transition. Figure 2.8 shows the UV/visible spectra for all of the 

reported compounds. All of the reported materials show an intense absorption band at 

~800 nm. This band is due to the 2Eg  2T2g transition of Cu2+. All the reported materials 

show an absorption edge below ~350 nm. The optical band gaps are shown in Table 4. In 

addition, there are absorptions between the absorption edge and copper absorption that is 

due to the M3+ d-d electronic transitions. Table 2.4 also lists the assignments of these 

peaks based on the Tanabe-Sugano diagrams. 

Magnetic Properties 

 The reported anti-perovskite phases all exhibit complex magnetism. Magnetic 

susceptibility measurements were collected on all samples in an applied field of 0.1 T, 

over the temperature range of 2 K – 300 K. Full range susceptibility plots showing FC 

and ZFC measurements for compounds 2.1-2.6 can be found in Figure 2.9. A Curie-
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Weiss fit was performed on the inverse susceptibility data using the 150 K – 300 K 

temperature range. Table 2.5 contains the results of the linear regression for all reported 

materials. Figure 2.10 shows magnetization plots for all materials. 

Compounds 2.1-2.4 have two magnetic ions, a M3+ species and Cu2+. Compounds 2.5 and 

2.6 have three magnetic ions: 2 different M3+ species and one Cu2+. The B site ions are 

connected with each other via the copper X site ions in a three dimensional structure. 

This forms M3+-F-Cu2+-F-M3+ chains, which run in all three dimensions. Superexchange 

interactions have been well documented to occur in fluorides55 and it is reasonable to 

expect that magnetic coupling via the superexchange mechanism can occur in this 

system. The Goodenough-Kanamori-Anderson (GKA) Rules55 provide a set of semi-

quantitative guidelines for determining the type of magnetic interactions present in a 

system with magnetic coupling via superexchange. According to the GKA rules, strong 

antiferromagnetic coupling is to be expected when magnetic ions are bonded at 180° 

apart. This antiferromagnetic interaction is weakened as the bond angles deviate from 

180°, opening up the potential for other interactions to prevail. Compound 2.1 contains 

V3+ and Cu2+, possessing 2 and 1 unpaired electrons, respectively. No magnetic ordering 

is observed in this compound, although there is very slight deviation from Curie-Weiss 

behavior below 10 K, which accounts for the slightly negative Weiss temperature. 

Compound 2.2 also does not display magnetic ordering; in fact it is a model paramagnet. 

The Weiss temperature of 2.2 is nearly exactly 0 K, exemplifying its Curie-Weiss 

behavior through 2 K. The calculated spin-only magnetic moments agree well with the 

observed magnetic moment, attained from the Curie-Weiss fit of the inverse magnetic 

susceptibility data. 
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Figure 2.8: UV-Visible Spectra for Compounds 2.1-2.6. The normalized UV/Visible 
spectra for compounds 2.1-2.6. All compounds show an absorption edge at low 
wavelength, a M3+ specific d-d absorption, and an absorption corresponding to Cu2+. 
Table 1.4 details these absorbances. 

Table 2.4: UV-Vis Band Assignments for Compounds 2.1-2.6 

Compound Band Gap UV/vis Peak and Assignment 
1 3.48 eV λmax = 426, 264 nm 3T1g  3T2g, 3T1g  3T1g (3P) 
2 3.51 eV λmax = 439 nm 4A2g  4T2g 
3 3.49 eV λmax = 496 nm 5Eg  5T2g 
4 3.41 eV None No Spin-Allowed Transitions 
5 3.43 eV λmax = 426 nm 3T1g  3T2g 
6 3.96 eV λmax = 447 nm 5Eg  5T2g 
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Figure 2.9: Magnetic Susceptibility Data for Compounds 2.1-2.6. The magnetic 
susceptibility and inverse magnetic susceptibility of materials 2.1-2.6. Both the field 
cooled and zero-field cooled data is shown, and overlay perfectly for all materials except 
2.3, which shows slight field dependence at 2 K.  

Table 2.5: Curie-Weiss Constants for Compounds 2.1-2.6 

Compound 1 2 3 4 5 6 
μeff (μB/F.U.) 4.88 6.39 7.78 8.95 7.43 8.17 
μcalc* (μB/F.U.) 5.00 6.24 7.55 8.89 7.21 7.80 
θ -6.7 K -0.6 K -2.2 K 2.3 K -2.7 -0.9 K

*Moment calculated from spin-only values
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Figure 2.10: Magnetization Data for Compounds 2.1-2.6. The magnetization plots for 
materials 2.1-2.6. Five quadrant measurements were performed at 2 K for all reported 
compounds.  
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Compound 2.3, which contains Mn3+, exhibits more complicated magnetic 

behavior. It has been observed that magnetically coupled ions can undergo a cooperative 

Jahn-Teller effect56. This cooperative effect may be ferrodistortive, which results in 

antiferromagnetic coupling, or antiferrodistortive, which in turn leads to ferromagnetic 

coupling. Ferrodistortive ordering occurs between two Jahn-Teller ions where the 

elongated (axial) axis of one ion is bonded to the non-elongated (equatorial) axis of the 

other ion. Since the Mn3+ ions are bonded to Cu2+ ions through a fluoride bridge (both of 

which exhibit a strong Jahn-Teller effect), this cooperative distortive effect is expected. 

In fact, 2.3 exhibits ferrodistortive ordering, consisting of the elongated Cu-F bonds 

being connected to the short Mn-F bonds, shown in Figure 2.11. Compound 3 displays 

Curie-Weiss behavior above ~10 K, and deviates significantly from Curie-Weiss 

behavior at temperatures below 10 K. At ~5.8 K there is a ferromagnetic deviation, 

followed by a sharper antiferromagnetic deviation at 3.8 K. The magnetic susceptibility 

and inverse susceptibility are shown in Figure 2.12. The paper by Nunez et al46 provides 

an in depth analysis of the magnetism of this sample, however in our sample, consisting 

of ground crystals, we do not observe the spontaneous magnetization they report below 4 

K. Instead, the FC and ZFC data agree perfectly down to 2 K, and no hysteresis is

observed, even at 2 K. Figure 2.13 shows the magnetization plot. It is likely that the 

magnetic ordering is due to antiferromagnetic interactions. This notion is strengthened by 

the fact that the Mn3+ and Cu2+ Jahn-Teller ions are arranged in a ferrodistortive manner, 

which is expected to lead to antiferromagnetic ordering, suggesting that the observed 

magnetization is due to a canted antiferromagnetic spin alignment. Despite the 

ferrodistortive ordering of the crystal structure, there is a clear ferromagnetic-like 
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Figure 2.11: Ferrodistortive Ordering in 2.3. A view down the b crystallographic axis 
showing ferrodistortive ordering. Ferrodistortive ordering occurs between two Jahn-
Teller ions where elongated (axial) axis of one is bonded to the non-elongated 
(equatorial) axis of the other. Manganese is shown as purple octahedra, copper is shown 
as blue octahedra, oxygen is shown in red, fluorine in bright green, and hydrogens have 
been omitted for clarity. 
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Figure 2.12: Low Temperature Susceptibility of 2.3. The magnetic susceptibility and 
inverse susceptibility data for 2.3. Data was collected in a ZFC measurement with a 0.1 T 
applied field. The temperature range is 2 K to 50 K to highlight the low temperature 
magnetic transitions at ~8 K and 3.8 K. Magnetic transitions can be clearly seen in the 
inverse susceptibility (red). 
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Figure 2.13: Magnetization of 2.3. The magnetization plot for compound 3. The applied 
field swept from -5 T – 5 T, and the measurements were taken at 2 K. The magnetization 
plot shows ordering corresponding to a sharp jump in magnetization at low fields. There 
is no hysteresis, indicating an antiferromagnetic ordering. Above the ordering, there is a 
linear dependence with field that does not saturate, even at 5 T. 
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Figure 2.14: Low Temperature Susceptibility of 2.4 The magnetic susceptibility and 
inverse susceptibility plot of 2.4. Data was collected in a ZFC measurement with a 0.1 T 
applied magnetic field. Data is shown in the range of 2 K – 50 K to highlight the 
antiferromagnetic transition at ~3.8 K.  
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transition ~9 K, which can be seen in Figure 2.12. As canted spins are likely for Mn3+ and 

Cu2+ based on the Mn-F-Cu bond angles of ~124°, we suppose that this is due to a canted 

antiferromagnetic ordering of the spins. The magnetic susceptibility plot for compound 

2.4 is shown in Figure 2.14. Fe3+ is not a Jahn-Teller ion and so the cooperative effect is 

not to be expected. There is, however, a distinct antiferromagnetic magnetic transition ~ 4 

K, which is accompanied by a weak field dependence at 2 K. This field dependence is 

replicated in the magnetization plot, although the coercive field is quite weak. The 

observed field dependence is likely due to a small degree of spin-canting of the 

antiferromagnetic interactions. The magnetization plot is shown in Figure 2.15.  

Compounds 2.5 and 2.6 each possess two trivalent metals in addition to divalent 

copper. The magnetic ions are disordered, which could interfere with any magnetic 

ordering. 2.5 contains vanadium and iron, and is paramagnetic, following Curie-Weiss 

behavior all the way to 2 K. Likewise, 2.6 appears to follow the paramagnetic regime 

across most temperatures. Unlike 2.5 however, there is slight deviation from Curie-Weiss 

behavior at low temperature, similar to the deviation found in 2.4. Figure 2.16 shows the 

magnetic susceptibility and inverse magnetic susceptibility data. This is potentially due to 

the presence of excess iron in 2.6, which could contribute to some localized magnetic 

ordering at low temperatures. It was expected that materials 2.5 and 2.6 would display 

similar magnetic properties to compound 2.4, due the similarity in structure and the 

presence of Fe(III) in the B site; however any magnetic interactions that occur arise 

below 2 K, thus we cannot see them. It is possible that compounds 2.5 and 2.6 possess a 

similar magnetic structure, but that the interactions are weakened by the severe disorder 

across the metal(III) sites. 
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Figure 2.15: Magnetization of 2.4. The magnetization plot of 2.4. Data was collected at 
2 K in fields ranging from -5 T – 5 T. Material 2.4 shows magnetic ordering accompanied 
by weak hysteresis, which is shown in the inset. The material saturates at high field with 
a moment of 12.3 μB/F.U. 
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Figure 2.16: Low Temperature Susceptibility of 2.6. The magnetic susceptibility and 
inverse magnetic susceptibility of 2.6. Data was taken from a ZFC measurement in an 
applied field of 0.1 T. Data is shown from 2 K – 50 K. There is a slight transition just 
above 2 K that appears to be antiferromagnetic in nature. 



www.manaraa.com

61 

Altogether it is extremely difficult to derive the spin-structure of magnetic 

materials from bulk measurements, such as SQUID magnetometry, except in the clearest 

of cases and typically neutron scattering data are collected to determine the magnetic 

structures. To enable such measurements, we are in the process of preparing deuterated 

samples of 2.3 and 2.4 to use neutron diffraction studies to determine the magnetic 

structure of these materials and to understand the underlying nature of the observed 

magnetic phenomena.  
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CHAPTER 3 

MAGNETIC AND THERMAL BEHAVIOR OF A FAMILY OF COMPOSITIONALLY 
RELATED ZERO-DIMENSIONAL FLUORIDES* 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*Adapted with permission from Felder, J. B.; Smith, M. D.; Sefat, A. S.; zur Loye, H. –C. 

Solid State Sciences 2018 submitted 
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Introduction 

 The hydrothermal synthesis method has been used to great effect in order to 

synthesize a host of new materials exhibiting a wide variety of properties. 1–6 

Hydrothermal synthesis is a term that encompasses a large array of synthetic conditions 

with one commonality: they all employ superheated water as a solvent. Traditional 

hydrothermal syntheses make use of high-temperature high-pressure autoclaves to create 

supercritical water. 7–9 These supercritical water reactions have been extremely effective 

for exploring the phase space of many materials since the supercritical fluid has is able to 

dissolve and crystallize a number of materials, including highly refractory ones. 8  

 As effective as this method has been, it has a high cost to entry into the field due 

to the necessity of acquiring specialized equipment. Furthermore, without the proper 

expertise these supercritical reactions can easily result in violent depressurizations of the 

reaction vessel. For these reasons, many researchers have turned to the so-called mild 

hydrothermal approach. The mild hydrothermal method involves utilizing (relatively) 

inexpensive PTFE (polytetrafluoroethylene) lined autoclaves as reaction vessels and 

lower temperatures (and thus lower pressures). The superheated water in a mild reaction 

(100° - 250° C) does not have the dissolving power of a supercritical fluid (>374° C), 

however by carefully choosing the starting reagents researchers have shown that these 

milder reactions can result in a wealth of new materials, including oxides and fluorides10–

12. 

It has been well documented that introducing fluoride ions into a system can 

result in dimensional reduction, or ‘cutting’ a high-dimensional structure into lower-

dimensional units13, 14. Fluorine’s ability to effect this dimensional reduction is a 
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function of its size and its charge: it is large enough to fit into the same coordination 

environments as oxygen, but with half the anionic charge it is easily charge balanced by 

metal centers (especially highly oxidized metal centers). These effects cause fluorine to 

be more likely to occupy terminal positions than oxygen, which drive the ‘cutting’ effect. 

Within the field of fluorine chemistry, these phenomena are colloquially known as the 

‘Tailor effect’. 13 These cutting and Tailor effects have been used to direct the formation 

of low-dimensional materials, although less so for systematic investigations directed at 

synthesizing dimensionally reduced materials under mild hydrothermal conditions. 15  

In this work we report the formation of materials with completely isolated metal 

coordination polyhedra: so-called ‘zero-dimensional’ structures. In essence, these are 

pseudo-molecular inorganic structures where metal centers are bound to inorganic ligands 

to form coordination polyhedra; however these polyhedra are connected only via 

intermolecular forces, H-bonds in this case. Although we believe the presence of fluorine 

in this structure certainly contributed to the zero-dimensionality of these crystals, the 

large number of aqua ligands is likely similarly responsible. Aqua ligands are electrically 

neutral, and greatly prefer terminal positions. This should, in theory, give rise to an even 

more pronounced ‘Tailor effect’ than from fluorine alone, as they take up coordination 

sites without contributing any anionic charge. 

Zero-dimensional crystals are an interesting class of materials because researchers 

usually associate many properties, for example long-range magnetism, with certain 

multiple dimensionality features. In zero-dimensional crystals these features are often 

missing, and the structural units are completely isolated. This would lead one to think that 

zero-dimensional crystals would have few interesting properties, however the literature 
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shows that this is not the case as these types of materials have been shown to exhibit 

fascinating electrical and magnetic properties. 16 

Herein we report the syntheses, crystal structures, optical, thermal, and magnetic 

properties of four new zero-dimensional fluoride-based  structures with antiferromagnetic 

ordering. Table 3.1 lists each stoichiometry along with a number assignment, which will 

be used to refer to these materials from this point forward. 

Experimental 

Synthesis 

 The following materials were used as received without further modification: 

Ni(CH3COO)2 • 4H2O (98%, Aldrich), MnF3 (98%, Alfa Aesar), CrF3 • xH2O (Alfa 

Aesar), FeF3 (99%, Alfa Aesar), V2O5 (99.6%, Alfa Aesar), and HF (48%, EMD). 

 

Caution!! HF is corrosive and acutely toxic. HF exposure causes severe burns that may 

not be immediately painful, and may cause permanent injury or death. Appropriate 

personal protective equipment should be worn at all times when handling HF, and proper 

technique for using HF safely should always be followed. 17–19 

 

 3.1-3.4 were synthesized using a mild hydrothermal crystal growth technique. The 

syntheses were carried out in 23 mL PTFE crucibles that were loaded with appropriate 

amounts of the starting materials. Typically, the metal precursors were mixed in a 1:1 

molar ratio with 1 mL of distilled water. Secondly, 1 mL of HF was added slowly to the 

aqueous mixture. After loading, the crucibles were closed and placed inside stainless steel 
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Table 3.1: Reported Materials for Chapter III and their Number Assignments 

 

 

 

Material Number Assignment Material Composition 
3.1 [Ni(H2O)6]2[MnF6][MnF4(H2O)2] 
3.2 [Ni(H2O)6][CrF5(H2O)] 
3.3 [Ni(H2O)6][FeF5(H2O)] 
3.4 [Ni(H2O)6][VOF4(H2O)] 
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autoclaves. The autoclaves were sealed and placed in a programmable oven which was 

then heated to 200° C in one hour and allowed to dwell for 24 hours. After dwelling, the 

oven was cooled to 40° C at a rate of 0.1°/minute, after which the oven was shut off and 

allowed to return to room temperature. 

 Once cool, the autoclaves were removed and unsealed. The crucibles were opened 

revealing large crystals (>1 mm on edge) within the mother liquor. The liquor was 

decanted off and the crystals were collected via vacuum filtration. As some of the product 

crystals are soluble in water, the product crystals were washed thoroughly with acetone 

before being allowed to dry under vacuum. Once dry, the crystals were collected for 

property measurements. Any remnant fluoride ions were immobilized by titrating the 

liquid waste with excess CaCl2. 

Single-Crystal X-ray Diffraction (SXRD) 

 Single crystal X-ray diffraction data for all of the reported materials were 

collected on a Bruker D8 QUEST diffractometer equipped with an Incoatec microfocus 

source (Mo Kα radiation, λ = 0.71073 Å). The diffractometers utilized either a PHOTON 

100- or PHOTON II- CMOS area detector. For all compounds, the raw area detector data 

frames were reduced and corrected for absorption effects using the SAINT+ and 

SADABS20 programs. Final unit cell parameters were determined by least-squares 

refinement of a large number of reflections taken from the data sets. Initial structural 

models were obtained with SHELXS21 using direct methods, and subsequent difference 

Fourier calculations and full-matrix least-squares refinements against F2 were performed 

with SHELXL-201621 using either the ShelXle22 or OLEX2 23graphical interfaces. Data 

were collected at both 300 K and at 100 K, and in most cases yielded identical solutions. 
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In the case of 3.3 there were differences in the 300 K and 100 K data, due to a structure 

transition, discussed in detail in later sections. Table 3.2 details the refinement data for all 

5 materials. 

Material 3.1 was found to crystallize in the triclinic space group P-1. The 

asymmetric unit consists of half each of four independent metal complexes: two 

Ni(H2O)6
2+ cations, one MnF4(H2O)2

- anion, and one MnF6
3- anion, all of which are 

located on crystallographic inversion centers (Ni1 on site 1e, Ni2 on site 1f, Mn1 on site 

1a and Mn2 on site 1g). There are also five fluorine atoms, seven water oxygen atoms 

and 14 independent hydrogen atoms, all located on positions of general crystallographic 

symmetry (site 2i). All non-hydrogen atoms were refined with anisotropic displacement 

parameters. Reasonable positions for all water hydrogen atoms were located in difference 

maps. They were refined isotropically with their O-H distances restrained to be 

approximately equal. One exception is the hydrogen atoms bonded to O7. The positions 

of these hydrogen atoms were refined subject to restraint, but their displacement 

parameters were treated as riding on the parent oxygen atom with Uiso,H = 1.5Ueq,O. The 

refined H atoms generate good water molecule and hydrogen bonding geometries and 

displacement parameter values, giving excellent support for the correct position 

assignments. O/F assignments were made on the basis of displacement parameter 

behavior, M-O/F distances, trial refinements of O or F site occupation factors and the 

appearance or absence of electron density corresponding to reasonable hydrogen atom 

positions near the site.  The largest residual electron density peak and hole in the final 

difference map are +0.95 and -0.47 e-/Å3, located 0.87 Å from F4 and 0.70 Å from O5, 

respectively.
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Table 3.2: Crystallographic and Refinement Data for Materials 3.1-3.4 

Material 1 2 α-3 β-3 4 
Empirical Formula F10 H28 Mn2 Ni2 O14 Cr F5 H14 O7 F5 H14 Fe Ni O7 F5 Fe H12 Ni O7 F4 H14 Ni O8 V 
F.W. (g/mol F. U.) 669.52 331.82 335.67 333.66 327.76 
Temperature (K) 301(2) 100(2) 100(2) 301(2) 100(2) 
Wavelength (Å) 0.71073 0.71073 0.71073 0.71073 0.71073 
Space Group P-1 P-1 P-1 C2/c P-1
a (Å) 6.4149(2) 6.4661(4) 6.4783(3) 10.9229(3) 6.4480(3)
b (Å) 8.9609(2) 8.6504(5) 8.699(3) 13.9060(3) 10.9120(6)
c (Å) 8.9609(2) 8.8679(5) 8.9131(4) 13.0252(4) 13.9456(7)
α (°) 104.1985(10) 104.6606(19) 104.5130(10) 90 88.22829(17)
β (°) 95.9379(10) 96.584(2) 96.9280(10) 100.2400(10) 88.1665(17)
γ (°) 96.6946(10) 94.423(2) 94.5090(10) 90 80.1749(17)
Volume (Å3) 491.22(2) 473.67(5) 479.31(4) 1946.93(9) 966.01(8)
Z 1 2 2 8 4
Density (Mg/m3) 2.263 2.327 2.326 2.277 2.254
Absorption Coefficient (mm-

1) 
3.291 3.227 3.569 3.514 3.000

F(000) 336 334 338 1336.0 660 
Crystal Size (mm) 0.10 x 0.08 x 0.05 0.18 x 0.12 x 0.04 0.14 x 0.10 x 0.08 0.16 x 0.09 x 0.03 0.18 x 0.12 x 0.08 
Theta range for data 
collection 

2.367 – 32.629 2.398 – 35.197 2.386 – 35.080 2.395 – 32.603 2.363 – 35.114 

Reflections 39493 34067 13402 67362 62409 
Unique reflections 3599 4231 4225 3466 8581 
Completeness 100.0% 99.9% 99.3% 97.0% 99.9% 
Data/Restraints/ Parameters 3599/91/88 4231/6/178 4225/0/177 3466/66/195 8581/378/372 
Goodness of Fit on F2 1.139 1.148 1.041 1.134 1.059 
Final R Indices R1 = 0.0329; wR2 = 

0.0678 
R1=0.0403; 
wR2=0.1072 

R1=0.0208; 
wR2=0.0474 

R1=0.0296; 
wR2=0.0766 

R1=0.0237; 
wR2=0.0553 

R Indices (all data) R1=0.0514; wR2=0.0734 R1=0.0572; 
wR2=0.1143 

R1=0.0284; 
wR2=0.0525 

R1=0.0325; 
wR2=0.0782 

R1=0.0314; 
wR2=0.0593 

Extinction Coefficient 0.0083(7) 0.0106(15) 0.0256(8) 0.0034(8) 0.0036(2) 

73 
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Material 3.2 crystallizes in the triclinic system. The space group P-1 (No. 2) was 

determined by successful structure solution. The asymmetric unit consists of half each of 

four crystallographically independent moieties: two centrosymmetric [Ni(H2O)6]2+ 

cations (Ni1 on site 1e, Ni2 on site 1f) and two centrosymmetric [CrF5(H2O)]2- anions 

(Cr1 on site 1a, Cr2 on site 1g). Both [Ni(H2O)6]2+ cations refine without issue, except 

for one water (O4 bonded to Ni2) in which the water hydrogen atoms are disordered and 

coupled to the chromium anion disorder, discussed see below. The acentric CrF5(H2O)2- 

anion is inconsistent with inversion symmetry and is therefore disordered. F/H2O 

scrambling was observed affecting one (unique) ligand site around each chromium. There 

are two well-behaved fluorine sites (F1/F2 on Cr1, F3/F4 on Cr2), whose site occupation 

factors and Ueq values suggest no deviation from full occupancy. The third unique site 

(F7/O7 bonded to Cr1 and F8/O8 bonded to Cr2) is a 50/50 mixture of fluorine and 

oxygen, giving an anion composition of [CrF5(H2O)]2-. This was identified by trial 

refinements of these sites as either 100% F or 100% O, giving either CrF6
3- anions or 

CrF4(H2O)2
- anions, respectively. Neither was satisfactory. The CrF6 model resulted in 

abnormally large displacement parameters for the unique F sites of each anion, along 

with two electron density peaks consistent with water hydrogen atoms. Refinement of 

this “F” site occupation factor (sof) for this site gave ca. 0.95, indicating less electron 

density. Conversely the CrF4(H2O)2 model gave an abnormally small Ueq value for the 

unique “O” sites of each anion, again with hydrogen atom electron density apparent. The 

sof for these “O” sites refined to ca. 1.15, consistent with greater electron density on the 

site. The sof results suggest both sites have a scattering power between O and F, i.e. a 

disordered O/F site. Appearance of hydrogen atom electron density near both sites is 
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consistent with partial occupancy by water and discounts a disordered CrF6
3- / 

CrF4(H2O)2
- model, which was also observed in the similar manganese crystal. For these 

reasons, these two sites are understood to be a statistically disordered mixture of fluoride 

and water, giving one CrF5(H2O)2- anion per formula unit. O7/F7 and O8/F8 atoms were 

refined with a fixed occupancy of 0.5 each, with identical atomic coordinates and Uij 

parameters for each unique site. H atom positions associated with the water component 

(O7 and O8) were clearly located in difference maps and refined with half-occupancy. 

O4, bonded to Ni2, was refined with three H atoms position, one with full occupancy 

(H4A) and two with half-occupancy (H4B, H4C). Water O4 is thus disordered over two 

orientations such that when F7 is present in a given asymmetric unit, the H4B position is 

present and H4C absent, and when water O7 is present, H4B is absent and H4C is 

present. A similar relationship exists between water O4 and O8/F8 site. The two mixed 

O/F sites, coupled with water O4 are correlated and form a physically sensible disorder 

assembly (see figure). Solution in the acentric space group P1 showed similar F/H2O 

disorder along with an unstable refinement. This material is thus a genuinely disordered 

structure best described in the centrosymmetric space group P-1. The difference in R-

values between an ordered CrF6
3- / CrF4(H2O)2

- model and the reported disordered 

CrF5(H2O)2- model is modest but significant: R1/wR2 = 0.043 / 0.120 compared with 

0.040 / 0.107, respectively. All atoms were refined with anisotropic displacement 

parameters. Hydrogen atoms were located in difference maps; most were refined freely. 

Hydrogen atoms with half-occupancy were refined with a common isotropic 

displacement parameter, and same-distance restraints were used for the O-H bonds of 

waters O2 and O5. No deviation from full occupancy was observed for any of the metal 
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atoms. The largest residual electron density peak and hole in the final difference map are 

+2.15 and -0.84 e-/Å3, located 0.78 Å from Ni2 and 0.63 Å from Cr1, respectively.

Data for material 3.3 were different at 300 K and at 100 K. Initially, the structure 

was assumed to be similar to the other reported materials, however at 300 K no triclinic 

cell gave suitable refinements, so the crystal was cooled to 100 K. At low temperature, it 

was confirmed that 3.3 crystallizes in the triclinic space group P-1. After structure 

solution, 3.3100 K was confirmed to be isostructural with 3.1 and 3.2. Given this result, the 

room temperature data was puzzling, and therefore data were collected on several 

crystals. After data collection on a suitable crystal, the 300 K structure was confirmed to 

be a polymorph of 3.3100, indicating that a polymorphic transition took place between 300 

K and 100 K.   3.3300 K (hereafter named β-[Ni(H2O)6][FeF5(H2O)], or β-3.3, with the 100 

K form designated as the α-phase). β-3.3 was found to crystallize in the monoclinic space 

group C2/c and consists of the same Ni(H2O)6 and FeF5(H2O) units as α-3.3. The 

FeF5(H2O) unit consists of two fully occupied fluorine sites, two split fluorine sites, and 

two split disordered O/F sites. The water hydrogens belonging to the Fe unit could not be 

located in the difference map. 

Finally, material 3.4 crystallizes in the triclinic P-1 space group. The asymmetric 

unit consists of half each of four centrosymmetric Ni(H2O)6
2+ cations and two complete 

VOF4(H2O)2- anions.  The four nickel centers are located on the following inversion 

centers: Ni1, site 1a; Ni2, site 1b; Ni3, site 1c; Ni4, site 1g. All other atoms are located 

on positions of general crystallographic symmetry (site 2i). O/F scattering factor 

assignments were clearly made on the basis of metal-O/F bond distances (esp. O1 – O4), 

displacement parameter behavior, and the presence or absence of hydrogen atom electron 
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density near the site. All non-hydrogen atoms were refined with anisotropic displacement 

parameters. Hydrogen atoms were located in difference maps and refined isotropically, 

with all O-H distances restrained to be similar (SHELX SADI). No deviation from full 

occupancy was observed for any of the metal atoms. The largest residual electron density 

peak and hole in the final difference map are +0.67 and -1.11 e-/Å3, both located < 0.6 Å 

from V(2). 

Powder X-ray Diffraction (PXRD) 

 PXRD data were collected using a Rigaku Ultima IV diffractometer. Data were 

collected in the angular range of 5° - 65° 2θ with a step size of 0.02°. All data were 

collected using Cu Kα radiation (λ = 1.5418 Å).  

Energy Dispersive Spectroscopy (EDS) 

 EDS was performed directly on crystals mounted on an SEM stub with carbon 

tape. EDS was performed using a Tescan Vega-3 SEM equipped with a Thermo EDS 

attachment. The SEM was operated in low-vacuum mode with a 30 kV accelerating 

voltage and a 20 second accumulating time. 

Optical Spectroscopy 

 UV-Vis spectra were recorded using a Perkin-Elmer lambda 35 scanning 

spectrophotometer. The spectrophotometer was operated in diffuse reflectance mode and 

was equipped with an integrating sphere. Reflectance data were converted internally to 

absorbance via the Kubelka-Munk function. 24 Spectra were recorded in the 200 – 900 

nm range. Vibrational spectra were recorded in the spectral range of 4000 cm-1 to 650 cm-

1 using a Perkin-Elmer spectrum 100 FT-IR spectrometer equipped with a diamond ATR 

attachment.  
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Thermogravimetric Analysis (TGA) 

The thermal properties were probed using an SDT Q600 DTA/TGA from room 

temperature to 600° C under a flow of 100 mL/min of nitrogen gas. Samples were heated 

in an alumina crucible lined with silver foil from room temperature to 600° C at a rate of 

10° /minute, then allowed to cool to room temperature. 

Magnetic Properties 

Magnetic property measurements were carried out using a Quantum Design 

MPMS3 SQUID magnetometer. Magnetic susceptibility measurements (both ZFC and 

FC) were carried out from 2 – 300 K under an applied magnetic field of 0.1 T. The data 

were corrected for radial offset and shape effects using the method developed by 

Morrison. 25 

Heat Capacity 

Specific heat data were obtained using a Quantum Design PPMS via the 

relaxation method for material β-3.3. Specific heat data were collected over the 

temperature range 2 K – 300 K. 

Results and Discussion 

Crystal Structures 

The crystal structures of 3.1. [Ni(H2O)6]2[MnF6][MnF4(H2O)2], 3.2. 

[Ni(H2O)6][CrF5(H2O)] and 3.3. α-[Ni(H2O)6]2[FeF5(H2O)] (α-3) are all triclinic zero-

dimensional structures with the same pseudo-layered arrangement of the ionic 

complexes. These layers are arranged in an ABAB sequence, with the octahedral ionic 

complexes arranged in a rock-salt type arrangement within each layer. The layers are 
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staggered causing the metal centers to lie within voids created by the layers above and 

below it. The structure can be viewed in Figure 3.1.  

 Although the arrangement of complex ions is identical in all three structures, the 

octahedral units are slightly different. All three structures contain the same [Ni(H2O)6]2+ 

complex. In structure 3.1, there are two unique Mn coordination polyhedra: one [MnF6]3- 

unit and one [MnF4(H2O)2]- unit that are ordered and reside in different layers; the two 

units are balanced by two Ni hexa-aqua complexes. 

 Materials 3.2 and α-3.3 present the same overall structure, however the two 

unique metal octahedra from structure 3.1 ([MnF6]3- and [MnF4(H2O)2]-) are averaged 

into a single [MF5(H2O)]2- (M = Cr, Fe) ionic unit which is distributed into both A and B 

layers. It is possible that this averaging is simply caused by disorder of the two 

complexes present in material 3.1, which would be impossible to distinguish by 

diffraction. The coordination octahedra present in these three materials are also shown in 

Figure 3.1. 

3.3. [Ni(H2O)6][FeF5(H2O)] 

 Material 3.3 was found to exhibit two thermal polymorphs, referred to as α-3.3 

and β-3.3 respectively, and undergoes a structural transition between 100 K and 300 K. 

The structure proved difficult to solve at 300 K due to the high thermal motion of the H-

atoms within the crystal, prompting a 100 K data collection. The 100 K data were of high 

quality, rapidly yielding a very good structure solution.  Using this solution, it became 

obvious that the 300 K structure had undergone a structural transition to a different 

polymorph, β-3.3, the structure of which was finally determined after collecting on 

several crystals. β-3.3 is monoclinic and crystallizes in the space group C2/c. Consistent 
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Figure 3.1: The crystal structure of materials 3.1-3.3. The overall zero-dimensional 
structure is shown (a) next to pseudolayer A (b) and B (c). The local coordination 
environments of Ni (d), M(1) (e) and M(2) (f) are shown to the right where M = Cr, Mn, 
Fe. For M = Cr, and Fe, the polyhedra shown in (e) and (f) are averaged to form a 
MF5(H2O) polyhedron. This polyhedron appears identical to (e), with the axial positions 
occupied by a split O/F disordered site. Ni is shown as dark green polyhedra, M(1) as 
maroon polyhedra, M(2) as brown polyhedra; O is shown as red spheres, F as green 
spheres, and H as black spheres. H-bonds are depicted as dashed lines. 
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with the polymorphic character, β-3.3 contains the same [Ni(H2O)6]2+ and [FeF5(H2O)]2- 

units as the α-phase, however the arrangement of the [Ni(H2O)6]2+ and [FeF5(H2O)]2- 

units is quite different. This is illustrated in Figure 3.2, which depicts the crystal structure 

of β-3.3. When viewing the structure down the c crystallographic axis, pseudolayers 

again make an appearance. Much like in the α polymorph, the layers are segregated by 

complex ions, however in the β case, in the A layer, every other [Ni(H2O)6]2+ octahedron 

is rotated by 90° relative to the neighboring one. The [FeF5(H2O)]2- ions, again, lie in the 

voids created by the A layer above and below, and the octahedra are slightly rotated to 

form a corrugated pseudolayer. The axial F ligands (pointing roughly down the c axis) 

are well-behaved and fully occupied, however the equatorial ligands are all disordered. 

As in the α polymorph, two equatorial ligands are F, and two are half occupied F/O, 

however in this case all four are split into 8 sites, yielding four sites that are 100% 

fluorine, and four sites that are disordered 50% F and 50% O. We hypothesize that the 

site splitting is caused by a resonant rotation of the octahedra, which also influences the 

H-atom positions on the [Ni(H2O)6]2+ octahedra in the layers above and below. The water

protons on the [FeF5(H2O)]2- octahedron could not be located due to the extreme disorder. 

3.4. [Ni(H2O)6][VOF4(H2O)] 

Material 3.4 crystallizes in the triclinic space group P-1 like materials 1-3, 

however the structure more closely resembles the monoclinic structure of β-3 in that the 

pseudolayers that make up the structure are segregated by metal complex: layer A 

contains all [Ni(H2O)6]2+ ions while layer B contains all [VOF4(H2O)]2- ions. This results 

in a pseudolayered structure with each layer consisting of only one type of ion. For 

example, layer A contains all [Ni(H2O)6]2+ ions while layer B contains only
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Figure 3.2: The crystal structure of β-3.3. (a) is a monoclinic zero-dimensional 
structure with pseudolayers that are segregated by metal complex. The regular Ni(H2O)6 
octahedron (b) forms layer A and heavily disordered FeF5(H2O) octahedra (c) make up 
the B layer and sit within voids formed by the A layers. Ni is shown by green polyhedra, 
Fe is shown by blue polyhedra, F is shown as green spheres, oxygen as red spheres, 
disordered O/F atoms are shown by orange spheres, and H is shown by black spheres. 
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[VOF4(H2O)]2- ions. An additional distinguishing feature of material 3.4 is that the V 

cation forms a coordination polyhedron consisting of three different ligands: O, F, and 

H2O. By charge balance considerations, this requires that V is in the +4 oxidation state. 

The crystal structure of material 3.4 is depicted in Figure 3.3.  

PXRD and EDS 

EDS was used as an initial elemental analysis tool to aid in the crystal structure 

determination. EDS indicated the presence of all of the ions that were present in the final 

crystal compositions. PXRD was used to confirm the purity of the bulk product. Powder 

patterns generated using the single crystal CIF’s were compared to the observed PXRD 

patterns and found to be in agreement for all compounds. Figure 3.4 shows the PXRD 

patterns for all of the reported materials. 

UV-Vis Spectroscopy 

All reported compositions contain transition metals in an octahedral coordination 

environment, making the Tanabe-Sugano diagrams useful tools for assigning d-d 

absorption bands26. The reported crystals contain ions ranging from V4+ to Fe3+ as well as 

Ni2+, meaning that the T-S diagrams for d1-d5 and d7 and d8 ions will be used for peak 

assignments. Figure 3.5 shows all of the UV-Vis spectra, and Table 3.3 details absorption 

maxima (band locations), and band assignments.  

All of the materials contain Ni2+ where the Tanabe-Sugano diagram for d8 

octahedral complexes supports that Ni(II) resides in a 3A2 ground state, with three spin-

allowed electronic transitions: 3A2 3T2, 3A2 3T1(F), and 3A2 3T1(P).  It is difficult 

to attempt to assign absorption bands in the presence of multiple absorbing ions, however 

material 3.3 contains high-spin Fe(III), for which there are no spin-allowed d-d 
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Figure 3.3: The crystal structure of 3.4. (a) is triclinic, however closely resembles the 
monoclinic structure of 3.3. The pseudolayers A and B are segregated by complex ion 
with layer A occupied by Ni(H2O)6 octahedra (b) and layer B occupied by VOF4(H2O) 
octahedra (c). Nickel ions are displayed as green polyhedra, V as purple polyhedra, F as 
green spheres, oxygen as red spheres, and H as black spheres. 
 

 

 
 

Figure 3.4: PXRD patterns of materials 3.1-3.4. (in order from left to right). The 
observed patterns (black) agree well with the patterns calculated from their respective 
.CIFs (red). For material 3.3, the α polymorph was used to calculate the red pattern.
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Figure 3.5: The solid-state UV/visible spectra for materials 3.1-3.4. (in order from left 
to right). Each of the materials show absorption from Ni(II) ions as well as the 
absorptions from their respective second transition metal. Material 3.3 contains Fe(III), a 
high spin d5 element which has no additional d-d electronic transitions. The vertical break 
in data at 326 nm is apparent to varying degrees across the spectra and is an artifact of the 
UV/visible lamp change. 

Table 3.3: UV/Visible d-d Absorptions and Assignments for Materials 3.1-3.4 

Material Absorption Maxima (nm) Band Assignments 
1 472 5Eg 5T2g 
2 410 4A2g 4T2g 
3 N/A No Fe3+ spin-allowed transitions 
4 900^ 2Eg 2T2g 
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transitions; therefore only the Ni(II) absorptions should be observed. The strong band at 

~400 nm was therefore assigned to the highest energy transition: 3A2 3T1(P)., the band 

at λmax = ~700 nm to the 3A2 3T1(F) transition. The lowest energy transition, 3A2 3T2, 

was determined to lie in the Near-IR region, and therefore could not be observed with the 

available instrumentation. The strongest absorption below 300 nm is believed to be an 

absorption band edge, and is present in all of the materials. 

 Band assignments for all of the other materials were made based on assigning the 

Ni(II) bands using 3.3 as a reference and the appropriate Tanabe-Sugano diagrams. The 

break in the observed spectra at 326 nm is a result of the UV-visible lamp change. 

Infrared Spectroscopy 

 The infrared spectra are straightforward for all reported compositions, revealing 

the expected O-H stretching bands and H-O-H bending bands associated with the high 

water content of the reported crystals. The full range IR spectra can be seen in Figure 3.6. 

Magnetic Properties 

 All of the reported materials are considered zero-dimensional crystals, meaning 

that there is no direct bridging between structural elements in the crystal structure. In lieu 

of real bonds, the structural units are held together purely by intermolecular forces, in 

these cases H-bonding. This means that the structural units could be considered to be 

magnetically isolated and, therefore, we might not expect to observe any long-range 

magnetic order due to the seeming absence of strong exchange pathways between 

magnetic ions. 

 In accordance with this, most of the materials reported herein are indeed simple 

paramagnets at room temperature (full temperature range magnetic susceptibility plots
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Figure 3.6: The FTIR spectra for materials 3.1-3.4. The IR spectra are simple, 
containing O-H stretching and H-O-H bending modes. 
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are shown in Figure 3.7), however they exhibit long range antiferromagnetic ground 

states. In the case of 3.1, there is weak antiferromagnetism present at low temperatures, 

with a TN = 3 K. The antiferromagnetic transition appears to be extremely weak, which is 

in line with our expectations that the magnetic exchange between isolated ions should 

also be weak. Figure 3.8 shows the low temperature portion of the magnetic susceptibility 

of 3.1. In the case of material 3.3 however, there is a clear, strong antiferromagnetic 

transition at TN = 5 K. This antiferromagnetic transition is shown in Figure 3.9. The 

nature of this ordering is unknown at the present, however there are two different 

magnetic ions present within each unit cell, Ni2+ (½ of four total centers, 2 equivalent 

ions) and Fe3+ (⅛ of eight centers, ½ of two centers, 2 equivalent ions). The paramagnetic 

moment is consistent with high-spin iron, suggesting that antiparallel ordering of Ni2+ 

and Fe3+ spins (the simplest conceivable ordering) would result in a ferrimagnet which, 

however, is not consistent with our data. Since our data point to a strong, pure 

antiferromagnet with no remnant magnetization, we can propose that either a) one of the 

magnetic ions does not participate in the ordering, or b) there is complex ordering which 

involves independent antiferromagnetic sublattices (the 2 equivalent iron atoms order 

independently from the 2 equivalent Ni atoms, but both are antiferromagnetic). The 

Curie-Weiss fit of the inverse magnetic susceptibility reveals a Weiss temperature of -5 

K, which agrees perfectly with the observed TN = 5 K. This is indicative of the absence of 

magnetic frustration and supports that the observed magnetic behavior is simple 

antiferromagnetism.  In principle, neutron diffraction data could shed light on the 

magnetic structure.  Unfortunately, the high H-content of these crystals greatly increases 

the difficulty of collecting high quality neutron 
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Figure 3.7: Magnetic Susceptibility of Materials 3.1-3.4. The full range magnetic 
susceptibility and inverse magnetic susceptibility plots for materials 3.1-3.4 (in order 
from left to right). Magnetic susceptibility is shown in green while inverse magnetic 
susceptibility is shown in red. ZFC data is shown by open circles and FC data is shown 
by closed points. In all cases the ZFC and FC data agree well down to 2 K.  

Figure 3.8: The Low Temperature Magnetism of 3.1. The low-temperature magnetic 
susceptibility (green) and inverse magnetic susceptibility (red) of 3.1. The magnetic 
susceptibility obeys the Curie-Weiss law down to low temperatures, but deviates 
antiferromagnetically at TN = 3 K. There is good agreement between ZFC (open circles) 
and FC (closed points) data. 
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Figure 3.9: The Antiferromagnetism of 3.3. The magnetic susceptibility (green) and 
inverse magnetic susceptibility (red) of material 3.3. There is a sharp and seemingly 
strong antiferromagnetic ordering at TN = 5 K, which agrees with the Weiss temperature θ 
= -5.00 K. 
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diffraction data.  The inverse magnetic susceptibility data of all four reported materials 

was fit to the Curie-Weiss law in the paramagnetic regime, and the extracted constants 

and agreement with calculated values are listed in Table 3.4. The calculated spin-only 

moments agree well with the observed moments in all cases, and the magnetic moment of 

3.4 confirms the presence of V4+. 

Heat Capacity 

 Even though material 3.3 clearly undergoes a structural change from the 

monoclinic system to the triclinic system on cooling, no transitions were observed in the 

magnetic susceptibility data between 100 K and 300 K. In order to better identify the 

transition temperature, we performed heat capacity measurements on single-crystals of 

3.3. The heat capacity revealed a sharp lambda transition at the TN of 5 K, confirming the 

long-range magnetic transition observed from the SQUID data. Unfortunately, the heat 

capacity data revealed no transitions in the 100 K – 300 K range, frustrating our attempts 

to pin down the exact transition temperature for the β-3.3 to α-3.3 transformation. The 

heat capacity data is plotted along with the inverse magnetic susceptibility in Figure 3.10. 

As a result of this result, we collected unit cell data in 10 K intervals from 300 K to 100 

K.  An analysis of this data indicates that the transition is quite broad and occurs over a 

20K range (~130 – ~150 K). This broadness, coupled with the fact that the structural 

change is very small and most probably second order, prevents us from observing the 

transition in the heat capacity data. 27 

Thermal Properties 

 Each of the materials was expected to have interesting thermal behavior due to the 

presence of atomic-scale mixing of the constituent metal ions. Based on the TGA curves,
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Table 3.4: Extracted Curie-Weiss Constants for Materials 3.1-3.4 

Figure 3.10: The Heat Capacity of Material 3.3. The heat capacity (green) and inverse 
magnetic susceptibility (red) for material 3.3. There is a clear lambda anomaly in heat 
capacity that corresponds to long-range antiferromagnetic order  at TN = 5 K. 

Material μcalc (μB/F.U.)* μeff (μB/F.U.) θ (K) 
3.1 8.00 8.73 -1.49
3.2 4.80 4.93 -0.12
3.3 6.56 6.75 -5.04
3.4 3.32 3.77 -8.71
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all four materials start to lose water in a single step beginning at ~100° C. This thermal 

weight loss is followed by a second gradual weight loss that is complete by 600° C, at 

which point the thermal products were analyzed by PXRD. Figure 3.11 shows the TGA 

curves, and Figure 3.12 shows the post-TGA PXRD patterns for the four reported 

compositions. 

Material 3.1 was transformed to an unknown crystalline phase by thermal 

treatment. The PXRD pattern suggests that 3.1 retains a high degree of crystallinity, 

however no match in the ICSD database for the thermal product. Furthermore, attempts 

to thermally treat a single crystal and investigate the structure after the weight loss 

resulted in sufficient loss of crystal quality to make it unsuitable for single crystal 

diffraction, and the phase remains unidentified. The thermal products of material 3.2 

were impossible to identify due to a severe loss of crystallinity. As the PXRD shows, 

there are no identifiable peaks in the post-TGA XRD pattern. Material 3.3 thermally 

decomposes into a mixture of FeOF and the binary NiO phase. Most interestingly, 

material 3.4 thermally decomposes into the multiferroic material Ni3V2O8 upon heating at 

600° C. This phase contains a 3:2 Ni:V ratio, which is different than the starting Ni:V 

ratio of 1:1.  It is likely that the “missing” vanadium is present as an amorphous 

vanadium oxide species that is impossible to detect via PXRD.  

Conclusions 

 The power and versatility of the hydrothermal synthetic method was utilized to 

synthesize four new zero-dimensional fluoride crystals. These crystals exhibit atomic-

scale mixing of the constituent elements, which allows for both interesting metal-metal 

interactions and a large degree of structural flexibility. This is exemplified by material
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Figure 3.11: TGA curves of materials 3.1-3.4. (in order from left to right). All of the 
reported materials exhibit what is presumed to be a water loss at 100° C immediately 
followed by gradual decomposition. The percentage weight loss of the initial weight loss 
step is shown. 

Figure 3.12: Post-TGA PXRD Patterns of Materials 3.1-3.4. The post-TGA XRD 
patterns of the four reported materials, in order from left to right. Material 3.1 retains a 
high degree of crystallinity, however was not identifiable. 3.2 was rendered amorphous 
after TGA. 3.3 transformed into simple Fe and Ni compounds. Finally, 3.4 was converted 
into Ni3V2O8, a multiferroic, after heating. 
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 3.3, which undergoes reasonably a fairly significant polymorphic structural transition 

and which also exhibits antiferromagnetic magnetic order. The atomic-scale mixing of 

elements coupled with the flexibility of a zero-dimensional structure led us to investigate 

the potential use of these crystals as precursors for more condensed functional materials. 

While most of the compounds decomposed to simple binary or ternary 

oxides/oxyfluorides, material 3.4 thermally transformed at 600 K into the multiferroic 

material Ni3V2O8. Despite the fact that there is an excess of vanadium in this product 

structure, we believe that zero-dimensional crystals could potentially be used to target the 

synthesis of industrially important functional materials. 
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CHAPTER 4: 

APPLICATION OF A MILD HYDROTHERMAL METHOD TO THE SYNTHESIS OF 
MIXED TRANSITION-METAL(II)/URANIUM(IV) FLUORIDES* 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

*Adapted from Felder, J. B.; Yeon, J.; Smith, M.; zur Loye, H.-C. Inorg. Chem. Front. 

2016, 4, 368-377 with permission from the Chinese Chemical Society, Peking University, 

and the Royal Society of Chemistry.
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Introduction 

 Research in the field of uranium crystal chemistry has become more widespread 

due to the continued interest by the scientific community in the reaction and crystal 

chemistry of uranium, especially reduced uranium. Uranium bearing materials have 

become prevalent due to the large-scale use of uranium in nuclear fuel rods and the 

resulting unused or unwanted materials remaining within the spent fuel rods.  

Consequently, research continues to explore new uranium containing materials to better 

understand the chemistry of such phases and to develop advanced materials for use in the 

construction of new efficient fuel rod assemblies.  Finally, the realization that we have to 

sequester these materials for long time periods in a safe form inside repositories has 

driven the study of safe and stable wasteform materials to store existing as well as the 

continually newly generated radioactive waste that is currently stored at various locations 

across the United States, as well as in other nuclear power utilizing countries.1-5 

 Over the past decade an ever increasing number of oxides and fluorides 

containing uranium in reduced oxidation states have been reported 6-10, in part due to the 

development of convenient synthetic techniques that provide ready access to oxidation 

states other than U(VI).  Overall, however, the majority of existing and reported new 

materials still contain uranium in its most oxidized state of U(VI). 11-18   We have been 

interested in exploring the U(IV) chemistry of fluorides and in developing facile synthetic 

methods to help us reach our goal. We have previously reported a mild hydrothermal 

method for synthesizing U(IV) fluorides that employs the acetate ion as an organic 

reducing agent along with a dilute hydrofluoric acid solution that acts as solvent and 

fluorinating agent. Although other organic reducing agents are available and effective, 
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the use of acetate allows the convenient use of UO2(CH3COO)2 as a starting material, 

combining the uranium source and the reducing agent. 19 

 Our previous reports have included the discovery of various binary, ternary, and 

quaternary U(IV) fluorides, including alkali- and transition-metal containing materials. 

These reports represent an extensive increase in the number of known U(IV) materials 

and have enabled the exploration of the intriguing optical and magnetic properties of the 

U(IV) ion. 20-24  Herein we continue to expand the library of U(IV) materials and report 

on the synthesis, thermal, and magnetic properties of five new compositions belonging to 

two distinct families of uranium fluorides: MUF6•3H2O, and M(H2O)6U2F10•2H2O. 

Experimental 

Materials and Methods 

 UO2(CH3COO)2•H2O (International Bio-Analytical Industries, ACS grade), 

Mn(CH3COO)2•4H2O (Alfa Aesar), Co(CH3COO)2•4H2O (Alfa Aesar, 98%), 

Ni(CH3COO)2•4H2O (Aldrich, 98%), Zn(CH3COO)2•2H2O (Fisher Scientific) and HF 

(EMD, 48%) were used as received. 

Caution: Although the uranyl acetate used in this experiment contains depleted uranium, 

standard precautions for handling radioactive materials should be observed. All 

uranium-containing materials were handled in labs specially designated for the study of 

radioactive materials. 

 

Caution: Hydrofluoric acid is acutely toxic and corrosive, and must be handled with 

extreme caution while using appropriate protective gear. If contact with the liquid or 



www.manaraa.com

 101 

vapor occurs, proper treatment procedures should immediately be followed and medical 

attention promptly sought. 

 

 All reported materials were synthesized using a mild hydrothermal technique. 

MUF6•3H2O, where M = Mn (4.1) and Zn (4.2), were prepared by mixing 2 mmol of 

uranyl acetate and 2 mmol of manganese acetate or zinc acetate with 1 mL of distilled 

water in a 23 mL PTFE crucible. Likewise, M(H2O)6U2F10•2H2O, where M = Co (4.3), 

Ni (4.4) and Zn (4.5), were prepared by mixing 2 mmol of uranyl acetate and 2 mmol of 

cobalt acetate, nickel acetate, or zinc acetate with 1 mL of distilled water in a 23 mL 

PTFE crucible. Additionally, 1 mL of aqueous HF was added slowly to each of the five 

reaction mixtures. Each crucible was then sealed in a stainless-steel autoclave and placed 

in a programmable oven. The oven was ramped to 200° C and held at that temperature 

isothermally for 24 hours. After dwelling, the oven was cooled at a rate of 0.1° C/minute 

to 40° C, at which point it was allowed to cool naturally to room temperature. 

 Once cool, the autoclaves were opened to reveal the product present in the form 

of single crystals sitting within the reaction liquid. The mother liquor was decanted and 

the product single crystals were collected by vacuum filtration. The product was washed 

thoroughly with distilled water, and acetone respectively, and allowed to dry under 

vacuum. Although each reaction yield was relatively low (~35% based on uranium), the 

product was present as a single pure phase except in the case of the zinc materials, which 

crystallize as approximately 50% ZnUF6•3H2O and 50% Zn(H2O)6U2F10•2H2O, making 

isolating individual products difficult. 
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Single-Crystal X-Ray Diffraction 

X-ray diffraction intensity data were collected using a Bruker SMART APEX 

diffractometer (Mo Kα radiation, λ = 0.71073 Å) or a Bruker D8 QUEST diffractometer 

equipped with a PHOTON 100 CMOS area detector and an Incoatec microfocus source 

(Mo Kα radiation, λ = 0.71073 Å).25 The raw area detector data frames were processed 

with SAINT+.26 An absorption correction based on the redundancy of equivalent 

reflections was applied to the data with SADABS.26 The reported unit cell parameters 

were determined by least-squares refinement of a large array of reflections taken from 

each data set. Initial structural models were obtained with SHELXS using direct 

methods.27 Subsequent difference Fourier calculations and full-matrix least-squares 

refinement against F2 were performed with SHELXTL28 or SHELXL-201427 using the 

ShelXle interface. 29  

The compounds MnUF6•3H2O and ZnUF6•3H2O crystallize in the monoclinic 

system. The space group C2/c was consistent with the pattern of systematic absences in 

the intensity data, and was confirmed by structure solution. The compounds are 

isostructural with the NiUF6•3H2O phase.30  The asymmetric unit consists of a 

manganese or zinc atom located on a crystallographic inversion center (Wyckoff site 4c), 

one uranium atom and one water oxygen atom located on a two-fold axis of rotation (site 

4e), and three fluorine atoms and one oxygen atom located on general positions (site 8f). 

All atoms were refined with anisotropic displacement parameters. All hydrogen atoms 

were located in difference maps and refined free with isotropic displacement parameters.  

 The compounds Co(H2O)6U2F10•2H2O, Ni(H2O)6U2F10•2H2O, and 

Zn(H2O)6U2F10•2H2O crystallize in the monoclinic system. The space group P21/c was 
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consistent with the pattern of systematic absences in the intensity data, and was 

confirmed by structure solution. The compounds are isostructural with the 

cobalt/neptunium analog CoNp2F10(H2O)8.31 The asymmetric unit consists of a M(II) 

atom located on a crystallographic inversion center (Wyckoff site 2d), one uranium, five 

fluorine, four oxygen and eight hydrogen atoms, all of which are located on positions of 

general crystallographic symmetry (site 4e). All atoms were refined with anisotropic 

displacement parameters. All hydrogen atoms were located in difference maps and 

refined isotropically with their O-H distances restrained to be similar (SHELX SADI 

instruction). The H-H distance in water O4 of Zn(H2O)6U2F10•2H2O was further 

restrained to 1.25(4) Angstroms using a SHELX DANG instruction. No deviation from 

full occupancy was observed for either of the metal atoms. Crystallographic data and 

selected interatomic distances for all reported materials can be found in Tables 4.1 and 

4.2 respectively. 

Powder X-Ray Diffraction 

 Powder X-ray diffraction (PXRD) data were collected on polycrystalline samples 

that were ground from the product single crystals. Powder data were collected on a 

Rigaku Ultima IV diffractometer using Cu Kα radiation. Data were collected over the 

two-theta range 10° to 65°, with a 0.02° step size. 

Energy Dispersive Spectroscopy (EDS) 

 Energy dispersive spectroscopy was performed directly on product single crystals 

mounted on an SEM stud with carbon tape. EDS was performed with a Tescan Vega-3 

SEM equipped with a Thermo EDS attachment. The SEM was operated in low vacuum 

mode and utilized a 30 kV accelerating voltage and 20 second accumulating time. 
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Table 4.1: Crystal Data and Refinement Information for Compounds 4.1-4.5 

 

 

 

 

 

 

 

 

 

 

 

 

 1 2 3 4 5 
Empirical Formula MnUF6(H2O)3 ZnUF6(H2O)3 CoU2F10(H2O)8 NiU2F10(H2O)8 ZnU2F10(H2O)8 
Color Green Green Green Green Green 
Crystal Size (mm) 0.06 x 0.08 x 0.12 0.04 x 0.07 x 0.10 0.02 x 0.16 x 0.20 0.04 x 0.06 x 0.08 0.04 x 0.06 x 0.08 
F.W. (g/mol F.U.) 461.02 471.45 869.12 868.9 875.56 
Temperature (K) 294(2) 100(2) 294(2) 100(2) 100(2) 
Wavelength (Å) 0.71073 0.71073 0.71073 0.71073 0.71073 
Crystal System Monoclinic Monoclinic Monoclinic Monoclinic Monoclinic 
Space Group C2/c C2/c P21/c P21/c P21/c 
Unit Cell Parameters      
     a (Å) 12.366(4) 12.1137(7) 11.0745(4) 10.9605(7) 11.0116(5) 
     b (Å) 6.975(2) 6.9186(4) 7.0989(3) 7.0441(4) 7.0571(3) 
     c (Å) 8.081(3) 7.9813(4) 8.8499(3) 8.8514(6) 8.8476(4) 
     β (°) 93.201(6) 92.9113(15) 94.1040(10) 94.532(2) 94.2424(13) 
     Volume (Å3) 695.90(4) 668.05(6) 693.87(5) 681.25(7) 685.66(5) 
     Z 4 4 2 2 2 
Density (Mg/m3) 4.4 4.687 4.16 4.236 4.241 
Absorption Coefficient (mm-1) 25.134 27.884 24.614 25.234 25.448 
Number of Reflections Collected 4427 14520 8989 40599 28820 
Number of Independent Reflections 872 1221 1728 3655 2015 
Data/Constraints/Parameters 872/0/65 1221/0/66 1728/6/129 3655/28/130 2015/29/130 
Goodness-Of-Fit on F2 1.077 1.13 1.102 1.125 1.104 

Final R Indices R1 = 0.0152  
wR2 = 0.0372 

R1 = 0.01  
wR2 = 0.0235 

R1 = 0.0210  
wR2 = 0.0524 

R1 = 0.0150  
wR2 = 0.0272 

R1 = 0.0118  
wR2 = 0.0272 

Largest Diff. Peak and Hole (e-/Å3) 0.817 and -1.245 1.281 and -0.84 1.314 and -1.410 1.382 and -1.005 1.099 and -1.106 

104 
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Table 4.2: Selected Interatomic Distances for Compounds 4.1-4.5 

 

 

 

 

M = Mn, Zn 1 2 M = Co, Ni, Zn 3 4 5 
U(1) - F(1) 2.238(2) 2.2947(11) U(1) - F(1) 2.215(3) 2.2075(11) 2.2092(15) 
U(1) - F(2) 2.284(2) 2.2461(11) U(1) - F(2) 2.301(2) 2.3052(11) 2.3055(14) 
U(1) - F(3) 2.318(2) 2.3143(11) U(1) - F(2) 2.423(2) 2.4136(10) 2.4168(13) 
U(1) - F(3) 2.431(2) 2.4040(12) U(1) - F(3) 2.340(2) 2.3341(10) 2.3371(13) 
U(1) - O(2) 2.585(5) 2.536(2) U(1) - F(3) 2.363(2) 2.3497(10) 2.3437(13) 

   U(1) - F(4) 2.343(2) 2.3424(11) 2.3412(13) 
M(1) - F(1) 2.093(2) 2.0278(11) U(1) - F(4) 2.347(2) 2.3549(11) 2.3553(13) 
M(1) - F(2) 2.103(2) 2.0079(11) U(1) - F(5) 2.351(2) 2.3489(10) 2.3498(13) 
M(1) - O(1) 2.199(3) 2.1090(15) U(1) - F(5) 2.353(2) 2.3511(10) 2.3506(13) 

       
   M(1) - O(1) 2.075(3) 2.0498(13) 2.0796(18) 

   M(1) - O(2) 2.088(3) 2.0442(14) 2.0767(18) 

   M(1) - O(3) 2.120(3) 2.0722(14) 2.1085(18) 
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Magnetic Properties 

 Magnetic measurements were carried out using a Quantum Design MPMS 3 

SQUID magnetometer. Field cooled (FC) and zero-field cooled (ZFC) measurements 

were performed under an applied magnetic field of 0.1 T in the temperature range of 2 K 

– 300 K.  Magnetization measurements were collected at 2K by sweeping the applied 

magnetic fields between -5 T and 5 T. All magnetic data were collected on 

polycrystalline powders obtained by grinding the single crystal products. The raw data 

were corrected for radial offset and shape effects according to the method described by 

Morrison. 32 

Thermal Properties 

 Thermal property measurements were performed on both single crystals and 

polycrystalline powder samples on a TA SDT Q600 TGA. Samples were heated in a 

nitrogen flow from room temperature to 600° C.  Low temperature, isothermal 

measurements were performed in an attempt to dehydrate the samples by heating single 

crystals at 60° C for 6 hours.  

Results and Discussion 

Synthetic Considerations 

 Mild hydrothermal synthesis provides many advantages over existing solid state 

reactions, including the ability to access reduced oxidation states of many species. This is 

especially important for uranium chemistry where the reduced U(IV) ion is much larger 

and thus significantly less soluble than the more oxidized U(VI) ion. This makes the 

synthesis of U(IV) containing materials difficult; however, by utilizing an in situ 

reduction step that uses the aqueous acetate ions activated by HF, soluble U(IV) 
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precursors are created that are incorporated into reduced U(IV) containing products, 

especially fluorides. Although other organic reducing agents are effective, including 

tartrates and oxalates33,34, the commercial availability of uranyl acetate makes the co-

availability of the uranium source and reducing agent convenient. In addition to uranyl 

acetate, transition metal (M2+) acetates may be used to provide soluble metal species 

while simultaneously increasing the concentration of the reducing acetate ion.  

 In addition to providing the stated advantages over conventional solid-state 

synthetic techniques, the mild hydrothermal synthesis is often preferred to high 

temperature (~350 – 700 °C) and high pressure hydrothermal methods because of its 

much lower operating temperature (~150-250 °C) and low autogenous pressures enabling 

these reactions to be run in inexpensive off the shelf PTFE-lined steel autoclaves.   Our 

definition of mild hydrothermal reactions are those run below the critical point of water, 

while regular hydrothermal reactions are run above the critical point of water. Overall, 

the lower cost, temperature, and pressure requirements of mild hydrothermal syntheses 

make it an attractive option for materials discovery. 

 This synthetic technique works well for the reported compositions, providing 

phase-pure single crystal samples for facile property measurements, purity analysis (by 

PXRD), and structure determination. The one exception is the two zinc containing 

compositions that crystallize as an approximate 50% mixture. The similarity in size and 

crystal morphology between the two phases made separating them exceedingly difficult 

and, while crystals suitable for structure determination are present for both families, the 

difficulty in separating the two phases prevents certain bulk property measurements, such 
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as magnetic susceptibility, from being conducted. Attempts to optimize the synthesis to 

favor one phase over the other were unsuccessful. 

Crystal Structure 

MUF6•3H2O 

 MnUF6•3H2O and ZnUF6•3H2O crystallize in the monoclinic space group C2/c, 

and are isostructural. The structure is built of two unique structural units: 9-coordinate 

U(IV) polyhedra and 6-coordinate M(II) octahedra, which are both shown in Figure 4.1. 

The metal octahedra are distorted, consisting of four short equatorial fluoride ions, and 

two long axial aqua ligands. The uranium polyhedron consists of 8 fluoride ions capped 

by an aqua ligand. The uranium polyhedra each share four fluoride ions with each other 

to form infinite UF4F4/2(H2O) chains running along the c crystallographic direction. The 

polyhedra within the chains alternate orientation by 180° so that the capping aqua ligand 

is alternately up (+b direction) or down (-b direction). This is shown in Figure 4.2, which 

depicts the one-dimensional uranium fluoride chains. The metal octahedra are isolated 

from one another, but are connected to the uranium fluoride chains. Each of the four 

equatorial fluoride ions of the metal octahedron is shared by a different uranium ion, so 

that each octahedron can be said to be corner sharing with four different uranium 

polyhedra. In addition, two of the uranium polyhedra belong to one uranium fluoride 

chain, and the other two to another, such that the metal octahedra function to bridge the 

one-dimensional uranium chains. Figure 4.3 shows a representation of the metal 

octahedra bridging two uranium fluoride chains. Figure 4.4 shows the overall structure 

that emphasizes the three-dimensional nature of the crystal structure 

.
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Figure 4.1: Local Coordination Environments in Compounds 4.1 and 4.2. The local 
coordination environments of both the U4+ and M2+ ions in structures 4.1 and 4.2 (MUF6 • 
3H2O). The uranium (left) is coordinated by eight fluoride ligands, and one aqua ligand. 
The metal (right) is coordinated by four fluoride ligands and two aqua ligands. Uranium 
is shown in dark green, the M2+ in purple, fluorine in light green, oxygen in red, and 
hydrogen in black. 
 

Figure 4.2: Infinite Uranium Chains in Compounds 4.1 and 4.2. The connectivity of 
uranium polyhedra in compounds 4.1 and 4.2. The UF4F4/2(H2O) polyhedra share an edge 
via two bridging fluoride ligands and form infinite chains along the [c] direction. The 
polyhedra alternate orientation by 180 degrees so that the aqua ligands remain as far apart 
as possible. Uranium is shown in dark green, fluorine in light green, oxygen in red, and 
hydrogen in black. 
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Figure 4.3: Bridging of Uranium Chains in Compounds 4.1 and 4.2. The infinite 
UF4F4/2(H2O) chains are bridged by the metal octahedra. Each metal octahedron is 
connected to four uranium polyhedra, two per chain. Each chain connects to four other 
chains in this manner, although only one of these connections is shown here. Metal 
polyhedra are shown in purple, uranium in dark green, fluorine in light green, oxygen in 
red, and hydrogen in black. 
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Figure 4.4: The Overall Crystal Structure of Compounds 4.1 and 4.2. An overall 
depiction of materials 4.1 and 4.2 as seen down the [c] direction. The structure is built up 
of one dimensional chains of UF8(H2O) polyhedra which connect to four other chains via 
bridging metal octahedra. Alternatively, this three-dimensional structure can be thought 
of as being constructed from layers (in the [b,c] plane) of uranium chains separated and 
connected by layers of metal polyhedra. The metal octahedra are shown in purple, 
uranium in dark green, fluorine in light green, oxygen in red, and hydrogen in black. 
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M(H2O)6U2F10•2H2O 

 Co(H2O)6U2F10•2H2O , Ni(H2O)6U2F10•2H2O , and Zn(H2O)6U2F10•2H2O  

crystallize in a two-dimensional structure that is more typical of a mild hydrothermal 

synthesis. Again, the structure is built of two different units, a UF9 polyhedron and a 

M(H2O)6 octahedron. Figure 4.5 shows both local coordination environments. The 

uranium centers share fluoride ions via either corner or edge sharing with other uranium 

centers thus creating a two-dimensional layer. These layers are separated by layers of 

isolated metal hexa-aqua octahedra and interstitial waters, which are held in place 

between the aqua and fluoride ligands solely by hydrogen bonding. Figure 4.6 shows 

these layers as they relate to the overall structure. The uranium-containing layer is present 

as a two-dimensional U2F8F2/2
2- sheet formed by corner and edge sharing UF9 polyhedra. 

These polyhedra corner share along the c axis, and edge share along the b-axis, which can 

be seen in Figure 4.7. 

 The U(IV) ion commonly exists in high coordination environments with 8 or 

more ligands surrounding the U(IV) center. As the library of U(IV) materials expands, it 

becomes possible to observed recurring structural motifs across series of U(IV) 

containing materials. One such structural motif is the capped trigonal prismatic 

coordination environment that U(IV) often adopts. This trigonal prismatic environment 

can be found in numerous previously reported U(IV) containing materials8,22,24,35,37, and 

also all five compositions reported herein.  The trigonal prism may be capped by two or 

three ligands on the rectangular faces of the prism depending on the particular compound. 

The high coordination of uranium dictates that any given U center will be surrounded by 

at least 8 ligands. In the case of fluoride ligands, each polyhedron would have an overall 
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Figure 4.5: Local Coordination Environments in Compounds 4.3-4.5. The local 
coordination polyhedra of both uranium and the metal(II) ion in structures 4.3-4.5. 
Uranium (left) is present as UF9 polyhedra. The high coordination number is 
characteristic of U(IV). The M(II) ion is present as hexa-aqua octahedral complexes. The 
M(II) polyhedra are shown in blue to differentiate them from structures 4.1 and 4.2. As 
before, uranium is dark green, fluorine is light green, oxygen is red and hydrogen is 
black. 
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Figure 4.6: The Overall Crystal Structure of Compounds 4.3-4.5. An overall 
depiction of structures 4.3-4.5 along with a break down of the layered structure. The 
uranium fluoride layer forms a two-dimensional U2F10

2- sheet with polyhedra that both 
corner- and edge share. These uranium fluoride layers are interspersed by metal layers. 
The metal polyhedra are isolated and separated by interstitial waters. This represents a 
true layered structure where the layers are connected only by intermolecular forces, in 
this case hydrogen bonding interactions. Uranium is shown in green, the metal ions in 
blue, fluorine in light green, oxygen in red, and hydrogen in black. 
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Figure 4.7: The 2-D Uranium Fluoride Layer in Compounds 4.3-4.5. A close look at 
the uranium fluoride layer. Uranium centers are bridged by two fluoride ligands in the [b] 
direction (edge sharing), and in the [c] direction by one fluoride ligand (corner sharing). 
Red circles highlight shared edges, and shared corners are highlighted by blue circles for 
clarity. Uranium is shown in dark green, and fluorine in light green. 
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negative charge, favoring the polyhedra to condense into chains, layers, or 3D 

frameworks, rather than remaining isolated molecular species. In the case of 

MnUF6•3H2O and ZnUF6•3H2O the uranium centers are present in the aforementioned 

tricapped trigonal prismatic environment. In this particular case, the trigonal prism is 

highly distorted due to the presence of a capping aqua ligand. 

 In the case of Co(H2O)6U2F10•2H2O , Ni(H2O)6U2F10•2H2O , and 

Zn(H2O)6U2F10•2H2O, the uranium centers form two-dimensional layers that are 

separated by the charge balancing M(II) octahedra. These two-dimensional sheets are 

identical to layers found in AU2F9 (A = K, Rb).22 Unlike AU2F9, where the layers are 

connected vertically, the layers in Co(H2O)6U2F10•2H2O , Ni(H2O)6U2F10•2H2O , and 

Zn(H2O)6U2F10•2H2O are separated, a consequence of the large hexa-aqua complexes 

that reside between the layers. 

Powder X-Ray Diffraction and EDS 

 Powder diffraction data, which were collected over the range 10° - 65° 2θ, are 

displayed in Fig 4.8-4.11 for all materials. ZnUF6•3H2O and Zn(H2O)6U2F10•2H2O could 

not physically be separated into phase-pure samples and, consequently, the powder 

diffraction data for the mixed-phase sample are shown. A Whole Pattern Fit was 

performed on the powder diffraction data for all other samples to demonstrate phase 

purity.  

 Energy dispersive spectroscopy confirmed the presence of U and the respective 

transition metal in all of the reported materials. EDS is a semi-quantitative measurement 

that cannot be used to deduce any reliable quantitative information about lighter elements 

such as oxygen or fluorine. Nonetheless, EDS was able to confirm the presence of both
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Figures 4.8, 4.9, 4.10, 4.11 (from left to right): PXRD Patterns of Compounds 4.1, 
4.3, 4.4, and a 4.2/4.5 mix. Observed (black) and calculated (blue) powder X-ray 
diffraction data for the reported materials. A Le Bail fit was performed to confirm phase 
purity, and the difference map is shown in red. Figure 4.11 (far right) represents a 
mixture of materials 4.2 and 4.5, which are unable to be separated. 
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 oxygen and fluorine in the crystals as a qualitative measure. EDS measurements were 

performed on several crystals in a batch to confirm that results were representative of the 

entire set. 

Magnetic Properties 

 Each material contains two magnetic ions: U4+ and a M2+ species (M = Mn, Co, 

and Ni). Accurate magnetic measurements on the Zn phases were unable to be obtained 

due to difficulties in separating the pure phases from the reaction mixture, and are thus 

not reported here.  

MUF6•3H2O 

 The structure of MnUF6•3H2O consists of infinite chains of UF4F4/2(H2O) 

polyhedra that are edge shared through two fluoride ligands. Additionally, the infinite 

chains are connected by MnF4(H2O)2 octahedra via fluoride ligands, which also serve to 

bridge two uranium polyhedra on each chain. Magnetic coupling via the superexchange 

mechanism has been well documented to occur in fluorides 36, and the greater orbital 

extent of the of the 5f uranium orbitals compared to 4f lanthanide orbitals open up the 

potential for interesting f-d magnetic coupling that is not typically observed.  The full 

magnetic susceptibility data are shown in Fig 4.12. 

 The magnetic susceptibility versus temperature data of MnUF6•3H2O are shown 

in Fig 4.13. The inverse susceptibility data were fit to the Curie-Weiss law over the 

region of 200 K – 300 K where the sample exhibits paramagnetic behavior. The material 

deviates slightly from Curie-Weiss behavior below 50 K. The observed magnetic moment 

of 6.92 μB agrees with the calculated value of 6.92 μB. For the calculation the moment for
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Figure 4.12: Magnetic Susceptibilities of Compounds 4.1, 4.3, and 4.4. The magnetic 
and inverse magnetic susceptibility for the reported materials overlay perfectly, 
suggesting an absence of field dependence. Left: MnUF6 3H2O, Middle: Co(H2O)6U2F10 
2H2O, Right: Ni(H2O)6U2F10 2H2O. 
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Figure 4.13: Magnetic Susceptibility of Compound 4.1. The magnetic susceptibility 
and inverse magnetic susceptibility of material 4.1. The measurement was taken from 2 K 
to 300 K in an applied field of 0.1 T. The zero-field cooled data is shown. The material is 
paramagnetic down to 2 K, with only slight deviation from Curie-Weiss behavior at low 
temperature. The expected transition to a non-magnetic singlet ground state is not 
observed.  
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 manganese was assumed to be the spin-only value, while a uranium moment of 3.58 μB, 

based on full Russel-Saunders, coupling was used. 

 The slight ferromagnetic deviation seen in the susceptibility data is difficult to 

attribute to any one cause. It is unlikely that the manganese ions order magnetically since 

such a large moment would contribute greatly to the magnetic susceptibility. The 

uranium chains present the possibility of magnetic order; however, no long-range spin 

ordering is observed in the magnetic susceptibility data. Interestingly, we do not observe 

the transition from a magnetic triplet state to a low temperature nonmagnetic singlet state 

that we have previously observed in U(IV) fluoride systems. 37-39 It is possible that the 

strong moment of manganese overshadows the nonmagnetic transition, however the 

moment of uranium is strong enough that its loss should be observed, indicating that it 

remains paramagnetic through 2 K. 

M(H2O)6U2F10•2H2O 

 Compounds Co(H2O)6U2F10•2H2O  and Ni(H2O)6U2F10•2H2O  also have two 

different magnetic ions, however the transition metal is present in isolated octahedra, 

connected only by hydrogen bonding interactions and is thus not expected to order. The 

uranium ions are present as UF9 polyhedra which both corner and edge share to form a 

two-dimensional sheet. The complex interconnectedness of uranium polyhedra allows for 

several possible exchange pathways. Figure 4.14 shows the magnetic susceptibility for 

Co(H2O)6U2F10•2H2O  and Ni(H2O)6U2F10•2H2O. Both compounds show a broad 

deflection from Curie-Weiss behavior at approximately 25 K. The Curie-Weiss fit for 

these materials was performed over the temperature range of 150 K – 300 K. 
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Figure 4.14: The Magnetic Properties of Compounds 4.3 and 4.4. The magnetic 
susceptibility and inverse magnetic susceptibility of materials 4.3 and 4.4. The 
measurement was taken from 2 K to 300 K in an applied field of 0.1 T. The zero-field 
cooled data is shown. The materials are paramagnetic except for a slight positive 
deviation from Curie-Weiss behavior below 50 K. The expected transition to a non-
magnetic singlet state is not observed. 
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 The use of spin-only magnetic contributions for the transition metal and full 

Russel-Saunders coupling for uranium generated effective magnetic moments of 7.26 μB 

calculated for Co(H2O)6U2F10•2H2O  (7.02 μB observed) and 5.65 μB calculated (5.64 μB 

observed) for Ni(H2O)6U2F10•2H2O , both of which are in good agreement with the 

observed values. Unlike material 4.1 which has a complex three-dimensional structure, 

the layered structure and isolated M2+ cations suggest that any magnetic ordering is likely 

to come only from U-F-U interactions. As with MnUF6•3H2O, the slight deviation from 

Curie-Weiss behavior is too ambiguous to suggest the presence of magnetic ordering. 

 Unexpectedly, both materials in this family also do not exhibit the expected 

transition to a low temperature nonmagnetic ground state, remaining paramagnetic down 

to 2 K. In fact, where a decreased moment is expected for a nonmagnetic transition, we 

observe a slightly increased moment (compared to Curie-Weiss behavior) at low 

temperatures.  

Thermal Properties 

 Both reported material families contain crystalline water, both interstitial and 

bound water (in the case of M(H2O)6U2F10•2H2O) or only bound water in the case of 

MUF6•3H2O. We were motivated to perform thermal experiments to probe the structural 

transformations observed by the movement of water in and out of the structure. The 

powder diffraction data for the thermal decomposition products are found in Figs 4.15-

4.17. 

MUF6•3H2O 

Fig 4.18 shows the TGA plot for MnUF6•3H2O. Two distinct dehydration events 

can be observed, the first beginning at 80° C, and the second at 128° C. The material 
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Figure 4.15 (left), 4.16 (middle), and 4.17 (right): Post-TGA PXRD Patterns of 
Compounds 4.1, 4.3, and 4.4. PXRD patterns showing the thermal decomposition 
products of the reported materials. The materials thermally decompose into binary oxides 
and fluorides upon heating under N2 gas. 
 
 
 
 

Figure 4.18: TGA Curve of Compound 4.1. Thermogravimetric analysis results for 4.1. 
Shown is the plot of weight loss as a function of temperature. Results show that one 
water is lost by 130° C, with the final two waters lost by 331° C, accompanied by the 
decomposition of the material. 
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decomposes into the binary fluorides UF4 and MnF2 as a direct result of the second 

dehydration. Attempts to dehydrate single crystals of the compound at 90° C to force a 

single crystal to single crystal transition almost succeeded.  Preliminary structural studies 

revealed that the UF8(H2O) polyhedron is dehydrated, leaving infinite chains of UF8 

polyhedra with only minor changes to the lattice parameters. Fig 4.19 shows the 

transformation of the infinite uranium fluoride chains. Attempts to obtain full structure 

solutions on the dehydrated crystals, however, were unsuccessful due to the deteriorated 

crystal quality during heating and the accompanying water loss. Table 4.3 gives atomic 

positions, and Table 4.4 gives lattice parameters and R factors from the preliminary 

single crystal study. 

M(H2O)6U2F10•2H2O 

 Co(H2O)6U2F10•2H2O  and Ni(H2O)6U2F10•2H2O  undergo four distinct 

dehydration events. Fig 4.20 shows the TGA plot for Co(H2O)6U2F10•2H2O, which is 

representative of both Co(H2O)6U2F10•2H2O  and Ni(H2O)6U2F10•2H2O. The initial 

dehydration at 53° C yields a polycrystalline powder, which was determ6ined via PXRD 

to be CoU2F10•4H2O. This represents a total loss of four waters, two of which are 

interstitial. The other waters are lost from the cobalt hexa-aqua octahedron, leaving 

square planar Co(H2O)4. Fig 4.21 shows the change in the powder diffraction data due to 

the dehydration. Further heating destroys the crystal structure and leaves UF4 and CoF2 as 

the major decomposition products.  

Conclusions 

 The mild hydrothermal technique coupled with a convenient in situ reduction by 

the acetate ions was shown again to be a versatile tool for synthesizing new U(IV) 
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Figure 4.19: Structural Transformation of the Uranium Chains in Compounds 4.1 
and 4.2. The transformation of the uranium fluoride chain induced by the loss of a 
crystalline water. Results obtained from preliminary single crystal diffraction data. 
Uranium is shown in dark green, fluorine in light green, oxygen in red, and hydrogen in 
black. 

Table 4.3: Atomic Positions of MnUF6 2(H2O) 
 

 

 

 

 

Table 4.4: Lattice Parameters and R Factors of MnUF6 2(H2O) 
 

 

 

 

 

 

Atom x y z 
U(1) 0.5 -0.0003 0.75 
Mn(1) 0.25 0.25 0 
O(1) 0.3 0.546 -0.003 
F(1) 0.3645 0.194 0.1869 
F(2) 0.3652 0.192 -0.1897 
F(3) 0.445 0.149 0.4993 

a 12.366 
b 6.975 
c 8.081 
α 90 
β 93.201 
γ 90 

R1 0.0918 
wR2 0.2078 

Goodness-of-Fit on F2 1.296 
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Figure 4.20: TGA Curve of Compound 4.3. Thermogravimetric analysis for material 
4.3. Shown is the plot of weight loss versus temperature. Results show that the first 
dehydration is accompanied by four waters lost, rapidly followed by the remaining four 
waters and decomposition by 301° C. 
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Figure 4.21: PXRD Pattern Showing the Structural Transformation of Compound 
4.3. Powder x-ray diffraction data before and after TGA of material 4.3. Blue is the 
calculated powder pattern of material 4.3 obtained from the single crystal structure 
solution. Red is the observed pattern before TGA. Black shows the change in the pattern 
caused by the thermal dehydration at 60° C. 
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containing materials. The materials presented herein showcase the structural versatility of 

the U(IV) ion by adopting both three dimensional and layered two dimensional structures 

under nearly identical synthetic conditions. In addition, the magnetic properties 

demonstrate that, although there is a lack of apparent magnetic order, the 5f unpaired 

electrons can remain viable for potential long-range order despite the fact that they com 

monly undergo a transition to a low temperature nonmagnetic singlet ground state due to 

thermal depopulation of excited f orbital states.  
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CHAPTER 5: 

SYNTHESIS OF ANHYDROUS K2TIOF4 VIA A MILD HYDROTHERMAL METHOD* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Adapted with permission from Felder, J. B.; Yeon, J.; zur Loye, H.-C. Solid State Sci. 

2015, 48, 212-217. © 2015 Elsevier. 
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Introduction 

 Compounds containing Ti4+ have been studied extensively for their photocatalytic 

activity, 1 as well as for their ability to support the reduction of CO2 into fuels such as 

methane. 2 Given the success of TiO2, it is not surprising that more recent work has 

focused on developing even more efficient catalysts – either by doping TiO2 with other 

transition metals or by synthesizing entirely new Ti4+ containing materials.  One 

approach to improving TiO2 via doping includes the introduction of fluoride ions into the 

structure as well as the preparation and investigation of new titanium-containing fluorides 

and oxyfluorides. 3 4 5  

A good starting point for the preparation of new titanium containing fluorides and 

oxyfluorides is the substitution of titanium for vanadium in existing vanadium fluorides 

and oxyfluoride phases.  The K/V/O/F phase space has been well explored, and within it 

there exists several potassium vanadium fluoride and oxyfluoride structures in which the 

vanadium can be substituted for by titanium.  These substitutions have been quite 

successful, and these as well as other titanium fluorides and oxyfluorides are of interest 

for their photocatalytic activity. Among this group, K2TiF6, K3TiOF5, K2Ti(O2)F4, 

K2TiOF4•(H2O), and K7Ti4O4F7 have been structurally characterized.  However, the 

synthesis and structural characterization of K2TiOF4, first reported by Ginsberg and 

Holder and attempted by numerous groups since, has apparently not yet been achieved. 3 

6 5 7 

 There are extensive reports in the literature describing work aimed at preparing 

K2TiOF4.  The reported structure characterizations indicate that two polymorphs, I and II, 

exist.  Synthetically, for example, Schmitz-Dumont and Deddmore 8 9 showed that the 
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thermal decomposition of K2TiF6 requires moisture to result in the target phase of 

K2TiOF4 plus HF, while according to Drossbach, 10 the electrolytic reaction of K2TiF6 

yields K2TiOF4 as an intermediate via the reaction of K2TiF6 + TiO2 + 2KF.  The group 

of Pausewang 11 12 has pursued the preparation of K2TiOF4 via a number of synthetic 

approaches, including a solid state reaction between K2TiF6, TiO2 and KF, the thermal 

decomposition of K2Ti(O2)F4•H2O, and the pyrohydrolysis of K2TiF6.  

The dehydration of the peroxide containing K2Ti(O2)F4•H2O was reported to 

proceed via a K2Ti(O2)F4 intermediate to K2TiOF4 (I) where the decomposition of the 

peroxo group required temperatures of at least 230 °C. 8 Unfortunately, due to the 

reported instability of K2TiOF4 (I), this has so far led to only mixed phase products 

containing K2TiOF4 (I), the cryolite composition K2.67TiO0.67F5.33, and TiO2.  K2TiOF4 (I) 

is reported to be tetragonal with a = 7.697(1), and c = 11.539(2) Å.  High pressure 

thermal decompositions of K2Ti(O2)F4•H2O were reported to proceed via the formation 

of K2TiOF4•H2O (130-230 °C) followed by a dehydration step (T > 300°C), resulting in 

K2TiOF4 (II). The crystal structure of K2TiOF4 (II) was reported to adopt the K2FeF5 type 

orthorhombic structure with space group Pn21a, and lattice parameters: a = 20.253(2), b = 

7.366(1) and c = 12.951(1) Å. 11 Interestingly, while K2TiOF4 was originally reported as 

being a possible member of the potassium oxyfluorotitanate family, to date it has proven 

impossible to synthesize this composition via preparation from precursors, such as the 

hydrate and peroxide forms. 11 12 

 Often a different synthetic route can enable the synthesis of an elusive material, 13 

14 and in the case of K2TiOF4 the use of a hydrothermal route has now resulted in the 

facile synthesis of K2TiOF4 in single crystal form.  In this paper we report the 
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hydrothermal synthesis of high quality single crystals of K2TiOF4 and the determination 

of its structure in space group Pnma.  In addition, we discuss why the dehydration of the 

hydrated form is unlikely to result in the anhydrous K2TiOF4 due to the major structural 

rearrangement that would be required. 

2. Experimental 

2.1 Materials and Method 

 The following reagents were used as received: TiF3 (Alfa Aesar), KF (Alfa Aesar, 

99%), and HF (EMD, 48%). 1 mmol of TiF3 and 5.00 g of KF were placed in a 23 mL 

PTFE lined stainless steel autoclave along with 2.5 mL of HF and 2.5 mL of H2O. The 

autoclave was sealed and placed in a programmable oven and ramped to 200° C at a rate 

of 10.00°/min. It was held at 200°C for 24 hours. The oven was then cooled at a rate of 

0.1°/minute until it reached a temperature of 40° C. The oven was then allowed to cool 

naturally to room temperature. After cooling, the autoclave was removed and the product 

obtained by vacuum filtration. Excess KF was removed by dissolution with water, and 

the product was washed thoroughly with water and acetone and then allowed to dry under 

vacuum at room temperature. The synthesis resulted in approximately 75% yield after 

washing, with an unknown side product being present as clear colorless crystals. 

2.2 Structure Determination 

X-ray intensity data was measured from a yellow polyhedral crystal of 

approximate dimensions 0.20 mm × 0.16 mm × 0.16 mm at 294(2) K on a Bruker 

SMART APEX CCD diffractometer utilizing Mo Kα radiation (λ = 0.71073 Å). The raw 

area detector data frames were reduced using SAINT+. 15 The multi-scan technique in 

SADABS was used to correct for absorption effects. 15 15 The unit cell parameters were 
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determined by least-squares refinement of sets of strong reflections. Full matrix least-

squares refinement against F2 of the structural models and difference Fourier calculations 

were performed with SHELXTL. 16  

 Crystallographic data from the structure refinements for K2TiOF4 can be found in 

Table 5.1. Atomic coordinates as well as selected interatomic distances are listed in 

Tables 5.2 and 5.3, respectively. 

2.3 Scanning Electron Microscopy 

 Single crystals of K2TiOF4 were analyzed by SEM using an FEI Quanta SEM 

instrument in high vacuum mode. Energy dispersive spectroscopy (EDS) was used to 

verify the presence of K and Ti.  

3. Results and Discussion 

 3.1 Structure Description of K2TiOF4 and Comparison to K2TiOF4•H2O11, 12 

 K2TiOF4, as well as its hydrate, K2TiOF4•H2O, are composed of one-dimensional 

chains of corner shared titanium octahedra. In the title compound, the infinite chains are 

composed of TiO2F4 octahedra that corner share exclusively through the F(1) position to 

yield staggered chains. Figure 5.1 shows the connectivity of the polyhedra that gives rise 

to the infinite chains. The oxide positions are cis equatorial with the F(1) position 

occupying the other equatorial sites. The F(3) and F(4) sites occupy the axial positions of 

the octahedra. The titanium octahedra are heavily distorted with the Ti4+ ion being offset 

significantly from the center. This is caused by the fact that M-O bonds are generally 

shorter than M-F bonds and explains why the Ti4+ ion appears to be pulled closer to the 

cis oxide ions. Figure 5.2 shows a close up of the local coordination environment of the 

Ti4+ ions. The hydrate is similar in that it is also composed of TiO2F4 octahedra that 
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Table 5.1: Crystal Data and Structure Refinement for K2TiOF4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2: Atomic Coordinates and Equivalent Isotropic Displacement Parameters 

(Å2) for K2TiOF4 

 x y z U(eq)* 
Ti(1) 0.1989(1) 0.2500 0.5693(1) 0.014(1) 
K(1) 0.6904(1) 0.2500 0.5927(1) 0.024(1) 
K(2) -0.0220(1) 0.2500 0.2827(1) 0.021(1) 
O(1) 0.3221(2) 0.0223(2) 0.6115(1) 0.028(1) 
F(1) 0.3221(2) 0.0223(2) 0.6115(1) 0.028(1) 
F(2) 0 0 0.5000 0.022(1) 
F(3) 0.0358(2) 0.2500 0.6952(1) 0.025(1) 
F(4) 0.2741(2) 0.2500 0.4081(1) 0.022(1) 
*U(eq) is defined as one third of the trace orthogonalized Uij tensor. 
 

Empirical Formula K2TiOF4 
Color Yellow 
Crystal Size 0.20 mm × 0.16 mm × 0.16 mm 
Formula Weight 218.10 g/mol F.U. 
Temperature 294(2) K 
Wavelength 0.71073 Å 
Crystal System Orthorhombic 
Space Group Pnma 
Unit Cell Parameters a = 7.3891(2) Å 
 b = 5.6458(2) Å 
 c = 11.4220(4) Å 
 α = 90° 
Volume 476.50(3) Å3 

Z 4 
Density (calculated) 3.040 Mg/m3 
Absorption Coefficient 3.524 mm-1 

Reflections Collected 6633 
Independent Reflections 791 
Absorption Correction Semi-empirical from equivalents 
Data / Restraints / Parameters 791 / 0 / 46 
Goodness-of-Fit on F2 1.196 
Final R Indices R1 = 0.0303 wR2 = 0.0787 
Largest Diff. Peak and Hole 0.460 and -1.333 e.Å3 
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Table 5.3: Selected Interatomic Distances (Å) for K2TiOF4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ti(1)-O(1) 1.6472(13) 
Ti(1)-F(1) 1.6472(13) 
Ti(1)-F(2) 2.1860(3) 
Ti(1)-F(3) 1.8768(16) 
Ti(1)-F(4) 1.9231(15) 
  
K(1)-O(1) 2.7947(14) 
K(1)-O(1) 3.0174(15) 
K(1)-F(1) 2.7947(14) 
K(1)-F(2) 2.8892(5) 
K(1)-F(3) 2.6783(17) 
K(1)-F(3) 2.8078(18) 
K(1)-F(4) 2.83509(18) 
  
K(2)-O(1) 2.8935(13) 
K(2)-O(1) 2.9565(14) 
K(2)-F(1) 2.8935(13) 
K(2)-F(1) 2.9565(14) 
K(2)-F(2) 2.8596(5) 
K(2)-F(3) 2.83597(19) 
K(2)-F(4) 2.6146(16) 
K(2)-F(4) 2.6494(15) 
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Figure 5.1: 1-D Chains in K2TiOF4. Staggered one-dimensional chain consisting of 
TiO2F4 octahedra. The octahedra corner-share exclusively through the F(1) 
crystallographic site. 
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Figure 5.2: Local Environment of Ti in K2TiOF4. The local environment of the Ti4+ 
ion. The octahedron is distorted with the Ti4+ ion being shifted toward the oxide 
containing edge. 
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corner share to form infinite one-dimensional chains. Unlike the title compound, 

however, the hydrate octahedra are connected only through the O(1) site and form linear 

chains. Figure 5.3 illustrates the linear chains of the hydrated compound. The O(1) oxide 

positions occupy the axial sites of the octahedra with the equatorial sites being occupied 

only by F(1) and F(2). In this case, the M-O bond is actually longer than the M-F bond 

due to the fact that the oxide ions linearly bridge two Ti4+ ions. The bond length is 

therefore increased to prevent the cations from being too close together. Figure 5.4 shows 

a single, fairly regular, TiO2F4 octahedron.  

 In the hydrated compound, the linear chains of octahedra create channels in which 

the waters of hydration reside.  This is illustrated in Figure 5.5, which shows four chains 

surrounding the channel. The waters of hydration within these channels can form 

hydrogen bonds with the fluoride ions of the titanium octahedra and act to connect the 

infinite chains to each other, which strengthens the lattice. In the title compound, 

K2TiOF4, the staggered nature of the chains accompanied by a canting of the chains 

relative to the hydrated compound fills the space occupied by the channels in the 

hydrated compound. This leaves no room for waters of hydration. Figure 5.6 illustrates 

the absence of channels in the title compound.  

 In both compounds, the structure is held together by the potassium ion. In the 

hydrated compound, the ten-coordinate potassium polyhedra fill all space. The three-

dimensional potassium lattice is formed by face- and edge-sharing KO4F6 polyhedra that 

connect along all three axes, as illustrated in Figure 5.7, which shows a slab of potassium 

polyhedra. In K2TiOF4, there are two unique potassium sites that are located between the 

one-dimensional chains that hold the structure together. The K(1) site forms infinite
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Figure 5.3: Linear Chains the K2TiOF4 Hydrate. The nearly perfectly linear chains of 
the hydrated compound. The chains are formed by corner-sharing octahedra. The sharing 
occurs only through the oxide ions. 
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Figure 5.4: Ti Local Environment of the Hydrate. The local environment of the 
titanium ion in the hydrate. The octahedron is not distorted, and the oxide ions are located 
trans to one another. 
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Figure 5.5: Channels in the K2TiOF4 Hydrate. A channel created by four infinite 
chains in the hydrated compound. The channel is occupied by waters of hydration (shown 
in purple). The waters can hydrogen bond to the fluoride ions in the chains allowing for 
reinforcement of the structure. 
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Figure 5.6: Absence of Channels in K2TiOF4. The arrangement of the one-dimensional 
chains of K2TiOF4 in space. The staggered nature and rotation of the chains relative to 
each other fill the space occupied by the waters in the hydrate. 
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Figure 5.7: Potassium Slab in the K2TiOF4 Hydrate. The arrangement of the 
potassium polyhedra in the hydrate fills all space. The polyhedra consist of potassium 
coordinating four oxide and 6 fluoride ions. 
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 staggered one-dimensional chains of ten-coordinate potassium polyhedra. The polyhedra 

consist of four oxide ions arranged in a cis fashion to form a square face. The remaining 

vertices of the polyhedron are fluoride ions. The polyhedra are connected via edge 

sharing exclusively through the oxide positions to form the staggered chains.  Each 

polyhedron corner shares through each of the fluoride positions, connecting to six 

additional polyhedra; this connects the staggered chains to each other. Figure 5.8 shows 

the one-dimensional potassium chains as well as their connectivity to one another. The 

K(2) position forms staggered one-dimensional chains of face shared polyhedra. These 

chains are corner-shared to form layers. The ten coordinate polyhedra have four oxide 

ions arranged in pairs trans to one another. Fluoride ions make up the remaining vertices. 

Face sharing occurs exclusively through the triangular face formed by the two O(1) sites 

and the F(4) site. Corner sharing within layers occurs exclusively through the F(3) 

position. The layers are interconnected via corner-sharing through the F(2) position. 

Figure 5.9 shows two views highlighting the chains of face-shared polyhedra and the 

layers. Figure 5.10 highlights the differences between the title compound and the hydrate 

by giving an overall structural representation. 

 Bond Valence Sum (BVS) calculations were performed for the title compound. 

BVS calculations were performed for the Ti4+, K(1)+, and K(2)+ sites. The results are 

4.408, 1.037, and 1.246. These values all fall within expected values for their respective 

oxidation states.17 18 19 20 

3.2 Synthetic Considerations 

 K2TiOF4 has been a sought after compound for many years, and several methods 

for its synthesis have been tested. Specifically, past groups have tried to synthesize the
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Figure 5.8: K(1) Coordination in K2TiOF4. The staggered one-dimensional chains 
formed by ten coordinate potassium polyhedra in K2TiOF4. The four oxide ions are 
arranged cis to one another (Left). The connectivity of the chains in space. Each chain 
corner shares with another to form a three-dimensional network (Right). 



www.manaraa.com

	 150 

Figure 5.9: K(2) Coordination in K2TiOF4. The layered structure of the K(2) site of 
K2TiOF4. The layers are connected via corner-sharing, and are offset from one another. 
Unlike in the K(1_ position, the oxide ions are arranged in pairs which are trans to one 
another (Left). A 90° rotation of the left image. This view shows how the layers are made 
up of face sharing polyhedra (Right). 
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Figure 5.10: Overall Structure Depictions of K2TiOF4 and its Hydrate. An overall 
representation of K2TiOF4 (Left) and the hydrate (Right) for comparison. 
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title compound by thermal decomposition of the peroxide precursor K2Ti(O2)F4 and by 

dehydration of the hydrated precursor K2TiOF4•H2O. The previous section compared the 

crystal structures of the title compound and the hydrate. By comparing the two different 

structures, some conclusions can be drawn as to why previous synthetic attempts have 

been unsuccessful.  

 In order to successfully transform the structure from that of the hydrate to that of 

the title compound, several large changes have to occur. First, the dehydration would 

have to occur. This would involve removing the waters of hydration from inside the 

channels formed by the linear one-dimensional chains of the hydrate. This is problematic 

because the waters play a role in the integrity of the structure due to the hydrogen 

bonding between the waters and the fluoride ions in the octahedra. Without hydrogen 

bonding to stabilize the structure, it would collapse.  

 Secondly, the connectivity of the titanium octahedra and the one-dimensional 

chains would have to change during the structural transformation. Both compounds are 

composed of TiO2F4 octahedra, but in the hydrate the oxide ions are located axially and 

trans to one another while in the title compound they are located equatorially and cis to 

one another. In the hydrate the octahedra are connected exclusively through the oxide 

site, while the octahedra are only connected via fluoride in the title compound. 

Additionally, the chains would have to go from linear to a staggered configuration as well 

as rotate to fill the space left by the hydration waters.  

 Finally, the potassium polyhedra must transform from a cubic configuration 

filling all space to a much more complicated structure of interconnected one-dimensional 

chains and layers of face-, edge-, and corner-sharing polyhedra. Such drastic changes 
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would be surprising under the mild dehydration conditions and render such a crystal-to-

crystal transition unlikely. It is for this reason that a direct synthesis of the title 

compound, such as the one discussed herein, is a more favorable approach for this system 

than a synthesis utilizing precursors such as the peroxide or hydrated compounds. 

3.3.Energy Dispersive Spectroscopy (EDS) 

 EDS was used to confirm the presence of potassium, titanium, oxygen, and 

fluorine. EDS suggested that potassium and titanium are present in roughly a 2:1 

potassium to titanium ratio. EDS does not give reliable quantitative data for oxygen and 

fluorine. 

4. Conclusion 

 K2TiOF4 is a compound that has been long sought after due to its potential 

photocatalytic activity, but previous attempts at its synthesis have proven to be 

problematic. Attempts to synthesize K2TiOF4 from the peroxide and hydrate precursors 

have been unsuccessful, and led to the reporting of incorrect structural data. This work 

has determined that K2TiOF4 crystallizes in the orthorhombic space group Pnma. In fact, 

K2TiOF4 crystallizes in the same space group and with similar lattice parameters as its 

vanadium analog, K2VOF4. This work has determined that synthesis of the title 

compound from precursors is unlikely due to the structural differences, and thus a direct 

synthetic method such as the one reported here should be utilized. 
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CHAPTER 6: 

UTILIZING AN IN SITU REDUCTION IN THE SYNTHESIS OF BAMOOF5* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Adapted from Felder; J. B., Smith, M. D.; zur Loye, H. –C. J. Chem. Cryst. 2018 submitted. 
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Introduction 

Hydrothermal synthesis is an extremely versatile tool for synthetic chemists that can 

utilize a wide range of conditions to synthesize an impressive variety of solid-state 

products, ranging from oxides1–5, to halides6–10, to inorganic-organic hybrid materials11–

16. Hydrothermal synthesis can be used in so many ways primarily because it can utilize a 

wide temperature range, with a wide variety of compatible precursors. Temperatures 

ranging from 50° C to 150° C have been used to great effect synthesizing many soft 

materials like hybrid organic-inorganic crystals17–19. Increasing the temperature range 

slightly to 170° C to 250° C can yield a wide variety of products including zero-

dimensional crystals20 to dense 3D frameworks21–23. Hydrothermal techniques can even 

be taken to extremes: 500° C and beyond, which can yield complicated structures grown 

from highly refractory materials24–26. 

 The versatility of hydrothermal synthesis couples perfectly with the fact that 

many real-world problems faced by society today involve complicated aqueous systems. 

One such problem is the storage of nuclear waste resulting from spent nuclear fuel 27. In 

the United States, much of this waste has accumulated from the production of nuclear 

weapons, and continues to accumulate from the use of commercial nuclear reactors to 

produce electricity. Currently, this waste is vitrified and stored in special containers, 

which has many advantages, including immobilization and a reduction in waste 

volume28–30; however the vitrification process is complicated by low solubility of certain 

species in borosilicate glasses used to vitrify the waste.  

 One such species is the tetrahedral molybdate [MoO4]2- ion31. The molybdate ion 

has low solubility in borosilicate glass, and so tends to form species such as CsLiMoO4
32 



www.manaraa.com

 158 

which forms regions of high crystallinity within the vitreous product. This serves to limit 

the amount of waste that can be vitrified, and inhibits the integrity of the waste glass 

itself. This problem has motivated us to begin to use mild hydrothermal synthetic routes 

as a laboratory to explore the interactions of molybdenum and uranium (the primary 

component of spent nuclear fuel) in aqueous conditions. Reported herein is the synthesis 

and structure of BaMoOF5, which resulted from our early explorations of this chemistry. 

Experimental  

Materials and Methods 

 The following reagents were used as received, with no further modification: 

Ba(CH3CO2)2 (99%, Alfa Aesar), MoO3 (99.5%, Alfa Aesar), UO2(CH3CO2)2 (ACS 

grade, IBI Labs), and HF (48%, EMD). 

Caution: Hydrofluoric acid is toxic and corrosive, and must be handled with 

extreme caution and the appropriate protective gear! I f contact with the liquid or vapor 

occurs, proper treatment procedures should immediately be followed.  

Caution: Although the uranium precursor used in this synthesis contains depleted 

uranium, proper procedures for handling radioactive materials should be observed. All 

handling of radioactive materials were performed in labs specially designated for the 

study of radioactive actinide materials. 

A one-step hydrothermal synthesis was performed. First, 1 mmol amounts of each 

starting reagent was added to 1mL of distilled water in a PTFE liner. 1 mL of HF was 

added slowly to the reagent mixture, immediately followed by capping the liner. The 

PTFE liner was loaded into a stainless steel autoclave and then placed into a 
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programmable convection oven. The oven was programmed to ramp to 200° C at a rate of 

10°/minute, hold at 200° C for 24 hours, the cool slowly to 40° C at a rate of 0.1°/minute. 

Once at 40° C the oven was shut off and allowed to cool naturally to room temperature. 

 Once cool, the autoclaves were opened and the liners removed. The liners 

contained blue crystals of the product phase BaMoOF5 in a green solution. The mother 

liquor was decanted off and the crystals were collected by vacuum filtration. The product 

crystals were washed thoroughly with water, then acetone, and allowed to dry under 

vacuum for 10 minutes before collection. 

Single-Crystal X-ray Diffraction (SXRD) 

X-ray intensity data from a light blue fragment cleaved from a polyhedral crystal 

were collected at 300(2) K using a Bruker D8 QUEST diffractometer equipped with a 

PHOTON 100 CMOS area detector and an Incoatec microfocus source (Mo Kα radiation, 

λ = 0.71073 Å) [33]. The data collection covered 99.9% of reciprocal space to 2θmax = 

75.6º, with an average reflection redundancy of 24.5 and Rint = 0.026 after absorption 

correction. The raw area detector data frames were reduced and corrected for absorption 

effects using the SAINT+ and SADABS programs 33. Final unit cell parameters were 

determined by least-squares refinement of 9952 reflections taken from the data set. An 

initial structural model was obtained with SHELXS using direct methods 34. Subsequent 

difference Fourier calculations and full-matrix least-squares refinement against F2 were 

performed with SHELXL-2014 34 using the ShelXle interface 35. Details about the single-

crystal refinement are given in Table 6.1. 
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Table 6.1: Crystallographic and Refinement Data for BaMoOF5 

 Empirical Formula Ba F5 Mo O 
Formula Weight (g/mol F.U.) 344.28 
Temperature (K) 300(2) 
Wavelength (Å) 0.71073 
Crystal System Orthorhombic 
Space Group Cmcm 
a (Å) 7.1445(3) 
b (Å) 6.7894(3) 
c (Å 10.1969(4) 
Volume (Å3) 494.62(4) 
Z 4 
Density (Mg/m3) 4.623 
Absorption Coefficient (mm-1) 10.465 
F(000) 604 
Crystal Size (mm) 0.08 x 0.06 x 0.05 
Theta range for data collection 3.997° - 37.802° 
Reflections 18632 
Unique reflections 739 
Completeness to θ = 32.575° 99.9% 
Data/Restraints/Parameters 739/0/29 
Goodness of Fit on F2 1.199 
Final R Indices R1 = 0.0126, wR2 = 0.0315 
R indices (all data) R1 = 0.0137, wR2 = 0.0317 
Extinction coefficient 0.00193(17) 
Largest diff. peak and hole (e-/Å3) 0.895 and -0.486 
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The compound crystallizes in the orthorhombic system. Systematic absences were 

consistent with space groups Ama2, Cmc21 and Cmcm, the latter of which was confirmed 

by structure solution. The asymmetric unit in Cmcm consists of five atoms: one barium 

atom (Ba1, site 4a, site symmetry 2/m), one molybdenum atom (Mo(1), site 4c, symmetry 

m2m), one oxygen atom (O(1), site 8f with symmetry m.. and disordered over site 4c), 

and two fluorine atoms (F(1) on a general position, site 16h; F(2) on site 4c). All atoms 

were refined with anisotropic displacement parameters. If refined with a single position, 

the Uij parameters for the unique oxygen atom O(1) describe a somewhat prolate 

ellipsoid, with U3/U1 = 5.2, suggesting a deviation from a single average oxygen atomic 

position. Several structural models were refined to investigate this: (a) simple two-site 

disorder across the mirror plane perpendicular to [001], (b) various lower symmetry 

space groups (Cmc21, Ama2, C2/m, C2). The disorder model (a) with O(1) on site 8f (site 

symmetry m) is stable and yields a more spherical oxygen ellipsoid (U3/U1 = 2.5). This 

generates two equivalent Mo-O bond distances of 1.667(3) Å, slightly longer than the 

Mo-O distance in the 'ordered' single-site model, 1.659(3) Å. The apparent shortening of 

the Mo-O distance in the latter case is then due to libration. R-factors and difference map 

features were essentially identical between the two models. Lowering the symmetry 

(models (b)) did not produce satisfactory refinements. In the orthorhombic space groups 

Cmc21 and Ama2, and the monoclinic space group C2/m, the anisotropic displacement 

parameters of O(1) are still elongated across a mirror plane, with U3/U1 values > 5.0. 

Decreasing the space group symmetry to C2, where oxygen is on a general position, 

resulted in an unstable refinement and O(1) U3/U1 remaining high (7.9). Considering the 

above observations, the best structure description, reported herein, is in space group 
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Cmcm with a disordered, two-site oxygen model. The oxygen displacement is modest, 

with O(1)-O(1)* = 0.37 Å. There is no indication of O/F site mixing from the data. 

Refined site occupation factors (sofs) for O(1), F(1), and F(2) were 0.508(5), 1.02(1) and 

1.02(1), within experimental error of full occupancy. The oxygen atom was therefore 

refined with a fixed sof of 0.5 and the F atoms as fully occupied. The Ba and Mo sofs 

refined to 1.004(2) and 0.993(2), respectively. The largest residual electron density peak 

and hole in the final difference map are +0.89 and -0.49 e-/Å3, located 0.80 Å from F(2) 

and 0.62 Å from Mo(1), respectively. Final atomic coordinates were standardized with 

the Structure Tidy program, and are shown in Table 6.2 36–38. Selected bond distances are 

given in Table 6.3. 

Results and Discussion 

Synthetic Considerations 

 The title molybdenum compound was obtained serendipitously while targeting the 

Ba-U-Mo-F phase space, due to the high molybdenum content of nuclear waste streams. 

The reaction products include blue product crystals and a green solution, suggesting that 

the uranium precursor was dissolved and reduced to U(IV), however did not precipitate. 

While this is unusual in our experience, this suggests a potential way to remove 

molybdenum selectively from nuclear waste streams. While the uranium did not 

precipitate, the end product of BaMoOF5 is a testament to the versatility of the in situ 

reduction typically employed to synthesize reduced oxides and fluorides hydrothermally.  

 Attempts were made to synthesize the title compound without using uranium, 

however these trials resulted in no precipitation of any crystalline products. This suggests 

that the uranium plays some role in the formation of BaMoOF5 crystals. It is possible that
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Table 6.2: Atomic Coordinates (x104) and Equivalent Isotropic Displacement 

Parameters (Å2 x103) for BaMoOF5 

 

 

 

*Ueq is defined as one third of the trace of the orthogonalized Uij tensor 

Table 6.3: Selected Interatomic Distances for BaMoOF5 

 

 Occupancy x y z Ueq 

Ba(1) 1 0 0 0 17(1) 
Mo(1) 1 0 4080(1) 2500 14(1) 
O(1) 0.5 0 6521(4) 2319(8) 29(2) 
F(1) 1 1329(1) 3580(2) 1114(1) 27(1) 
F(2) 1 0 1002(3) 2500 21(1) 

Ba(1) – F(2) 2.6384(5) 
Ba(1) – F(1) 2.7116(5) 
Ba(1) – F(1) 2.9843(11) 
  
Mo(1) – O(1) 1.667(3) 
Mo(1) – F(1) 1.9545(9) 
Mo(1) – F(2) 2.0902(17) 
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 the uranium species was reduced, and the poorly soluble U(IV) species helps saturate the 

mother liquor, encouraging the crystallization of the title phase. 

Crystal Structure 

 The structure of BaMoOF5 is a dense three-dimensional oxide-fluoride framework 

consisting of corner-shared barium polyhedra decorated by Mo(V) octahedra. The 

molybdenum units are isolated from each other. Figure 6.1 shows a view of the overall 

structure. Each barium atom is coordinated by 10 fluorine atoms in a slightly distorted 

pentagonal antiprismatic environment, which can be seen in Figure 6.2. These barium 

antiprisms connect by sharing a fluorine vertex to form chains running in the c direction. 

These chains are cross-linked by edge sharing forming a three-dimensional barium 

network, shown in Figure 6.3. 

 Molybdenum ions reside in a MoOF5 octahedron, where the oxygen atom resides 

on a split site. The octahedron is only slightly distorted (edges 2.8 Å x 2.6 Å x 2.6 Å), 

however the barium atom is offset from the center by 0.19 Å (closer to oxygen), which is 

caused by it’s proximity to barium polyhedra which share two faces below the equatorial 

plane. The equatorial fluorine atoms also share edges with barium polyhedra, leaving the 

axial oxygen as the only non-shared vertex. Figure 6.4 depicts the local coordination of 

molybdenum as well as its coordination to barium. 

Conclusions 

The Mo(V) oxyfluorides compound BaMoOF5 was synthesized via a mild 

hydrothermal route. The molybdenum was reduced in situ from a starting oxidation state 

of 6+ to 5+ utilizing a method previously employed to synthesize U(IV) fluorides. 

Although the target of this synthesis was to synthesize uranium/molybdenum containing
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Figure 6.1: The Overall Structure of BaMoOF5. An overall structural representation of 
BaMoOF5. The Mo(V) octahedra are isolated from each other, but connected via barium 
atoms. Each barium is coordinated to 10 F atoms. Molybdenum ions are shown as blue 
polyhedra, barium as purple spheres, oxygen as red spheres, and fluorine as green 
spheres. 
 

Figure 6.2: The Local Coordination Environment of Ba in BaMoOF5. Left: The 
barium pentagonal antiprism shown from the side. Right: The same antiprism shown 
from the top-down. Each barium is coordinated by 10 fluorine atoms in this squashed 
pentagonal antiprism. Barium is shown as purple polyhedra and fluorine as green spheres. 
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Figure 6.3: Ba Network in BaMoOF5. The three-dimensional network formed by 
barium atoms in BaMoOF5. The network is formed by corner-shared chains of barium 
polyhedra. The chains are cross-linked by edge-sharing in the [ab] plane. Barium 
polyhedra are shown in purple, and fluorine atoms are shown in green. 
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Figure 6.4: Ba and Mo Coordination in BaMoOF5. Left: The coordination of Mo with 
Ba shown from the top-down. Mo polyhedra offset from the barium polyhedra are corner 
shared, but face share with un-shown barium polyhedra. Right: The same unit, rotated to 
show the Mo polyhedra face sharing with Ba polyhedra. Center: The MoOF5 polyhedron 
with the Mo center offset. In all frames, molybdenum is shown in blue, barium in purple, 
fluorine in gree, and oxygen in red. 
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crystals, the precipitation of the Mo(V) crystals is a positive result due to the high amount 

of molybdenum present in nuclear waste streams. This shows that selectively 

precipitating Mo-containing crystals could be used as a way to remove molybdenum from 

these streams.  
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CHAPTER 7: 

[CO(H2O)6]3[U2O4F7]2: A MODEL SYSTEM FOR UNDERSTANDING THE 
FORMATION OF DIMENSIONALLY REDUCED MATERIALS*  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Adapted with permission from Felder, J. B.; Smith, M.; zur Loye, H. –C. Cryst. Growth 

Des. 2018, 18, 1236-1244. © 2018 American Chemical Society 
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Introduction 

 The continuing efforts of the inorganic research community1–5 have ensured that 

uranium crystal chemistry remains a vibrant field of research; partly because of the rich 

crystal chemistry offered by uranium6, 7 and partly due to the continuing need for a viable 

long-term nuclear waste storage solution. The redox chemistry of uranium is of particular 

interest to the zur Loye group, which probes the conditions under which hexavalent 

uranium can (or can not) be reduced to tetravalent uranium8–13.  Furthermore, the 

exploration of the bonding motifs of uranium in the presence of various anions, particular 

fluorine14–17 is of general interest due to the use of uranium fluorides in the processing of 

nuclear fuel, followed by their subsequent conversion to oxides as the final fuel species.  

 Hexavalent uranium exists nearly ubiquitously as the linear uranyl (UO2
2+ ; 

[O=U=O]2+) ion, which results in the uranyl oxide crystal chemistry being dominated by 

two-dimensional uranyl oxide sheet-anion structures18–24. The formation of these layered 

structural motifs is favored by the relative inertness of the axial uranyl oxygens that 

typically do not participate in bonding25–30, leaving only the equatorial anions to bond, 

resulting in the aforementioned sheet topology.  Fluoride ligands do not possess the 

ability to form double bonds and, therefore, are unable to form uranyl bonds with 

uranium.  As a result, hexavalent uranium fluorides form either non-uranyl structures, or 

mixed anion structures where fluoride ions are located in the equatorial positions and 

uranyl oxygens occupy the axial positions13, 31, 32. These latter mixed anion species often 

lead to interesting structural characteristics that arise from fluorine’s unique properties. 

 It has been shown that the addition of fluorine to a structure can result in a 

dimensional reduction (i.e. from a 2D layered material to a 1D chain structure) 33. 
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Traditionally, dimensional reduction refers to the addition of anions (such as fluoride) 

into a metal-anion framework (such as a metal-oxide framework) in order to cut the 

framework into smaller pieces of lower dimensionality. Fluorine, although perfectly 

capable of bridging metal centers, would prefer to reside in a terminal position. This 

property of fluorine is referred to as the ‘tailor effect’ and is responsible for the 

‘scissoring’ of high-dimensional structures into lower-dimensional ones. The addition of 

fluorine into an oxide framework lowers the overall anionic charge, alleviating the metal 

center from having to share anions to limit the overall negative charge. This charge 

compensation allows the metal to retain the same coordination number with, however, a 

reduced overall negative charge and, thus, the previously bridging sites can become 

terminal, breaking 3D structures into 2D sheets, 2D sheets into 1D chains, or 1D chains 

into molecular species34.  

 The dimensionality of a structure is a complex interplay between the oxidation 

state of metal ions, and a combination of the coordination number and identity of the 

anionic species. Typical uranyl species tend to form condensed 3D or 2D framework 

materials. This is due to the fact that uranium exists in the hexavalent state and prefers 

coordination numbers between 6-8. With a coordination number of 6, a hypothetical 

uranyl ion with the formula UO6 would have an overall charge of -6, which would favor 

condensation of uranyl polyhedra by sharing oxygen anions, thereby reducing the overall 

charge by -1 for each oxygen that is shared by two uranium polyhedra (by -1.33 if three 

polyhedra share the bridging oxygen). With coordination numbers of 7 and 8 hypothetical 

uranyl ions would have anionic charges of -8 and -10, respectively, creating an even 

greater driving force for condensation into 2- or 3D structures to allow sharing of oxygen 
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anions, and indeed this observation has been extensively noted in the literature18, 20–22, 35–

39. 

 By providing anions with a lower negative charge (such as fluorine), the 

hypothetical uranyl polyhedral ions have reduced anionic charges of -2 for UO2F4 to -4 

for UO2F8 (as discussed previously, fluoride ligands cannot form the double bonds 

necessary to occupy the uranyl positions). This reduced overall negative charge tends to 

reduce the amount of condensation required to compensate for more negatively charged 

anions, resulting in dimensionally reduced materials. Again, this observation has been 

noted in the literature12, 31, 32. 

 If one choses the case of a uranyl fluoride sheet consisting only of edge-sharing 

pentagonal bipyramids [UO2F5] as a model, then each polyhedron can be written as 

UO2F5/3 since each equatorial fluoride is shared by three uranium centers. This results in 

each uranium ion experiencing a net -5.667 charge (-4 from the oxygen anions and -1.67 

from the 5 fluoride anions contributing -1/3 charge each) resulting in an overall positive 

charge for the sheet, with a +0.333 charge per uranium.  Such an arrangement of cationic 

units has not been reported and would require anions to be present between uranyl sheets. 

These anions would be sandwiched between two close packed fluoride layers, which is 

energetically unfavorable; therefore, we consider cationic polyhedra to be unstable and 

unlikely to result in stable structures.  To achieve an overall negative sheet charge would 

require either additional anions or less sharing of anions with neighboring polyhedra.   

If the same pentagonal bipyramids are reduced dimensionally to give edge-

sharing chains, with two fluoride anions shared between each adjacent uranyl center, then 

we can revise the polyhedra to be written as UO2F1F4/2. This results in a net negative 
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charge for each uranyl polyhedra and each uranium experiences a net -7 charge for an 

overall -1 charge. Further dimensional reduction to vertex-shared chains results in 

UO2F3F2/2 polyhedra (-8 net, -2/unit) and, ultimately isolating each uranyl polyhedron 

gives rise to the molecular UO2F5 unit, experiencing a -9 net charge from the ligands and 

an overall -3 charge per isolated polyhedron. 

 Given this progression, it is easy to see how the addition of fluoride ligands into a 

system favors low-dimensional structures, ultimately resulting in isolated polyhedra.  

Conversely, the replacement of fluoride ligands with oxide ligands will favor 

condensation of molecular species into chains and ultimately sheets to prevent the 

condition in which sheets or chains have a net negative charge, which is unfavorable.  

This argument leads to a rather intuitive result, however, one that has been difficult to 

confirm given the dearth of low-dimensional uranyl structures in the literature. Herein, 

we report the synthesis and properties of a 1-D uranyl chain structure, 

[Co(H2O)6]3[U2O4F7]2, which we use as a model system to improve our understanding of 

the formation of dimensionally reduced uranyl systems.   

Experimental 

Materials and Synthetic Methods 

 The following materials were used as received without further modification: 

UO2(CH3COO)2 (International Bio-Analytical Labs, ACS grade), Co(CH3COO)2 

(Matheson, reagent grade), and HF (EMD, 48%).  

Caution! Hydrofluoric acid is corrosive and acutely toxic. HF should be handled with 

extreme caution while wearing the appropriate protective gear. Emergency medical 

treatment should be sought immediately following exposure to HF liquid or vapor 40–42. 
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Caution! Even though the uranium precursor used in this experiment contains depleted 

uranium, the appropriate safety precaution for handling radioactive material should be 

observed.  All work with uranium-containing materials was done in labs specially 

designated for the study of radioactive materials43.  

 

 2 mmols of uranyl acetate and 2 mmols of cobalt (II) acetate were mixed with 1 

mL of distilled water in a 23 mL PTFE crucible. After mixing the metal precursors, 1 mL 

HF was added slowly to the reaction mixture. After the reagents were added, the crucible 

was sealed into a stainless steel autoclave and placed in a programmable oven. The oven 

was ramped to 200° C and held for 24 hours. After holding, the oven was cooled at a rate 

of 0.1°/minute to 40° C, at which point the oven was shut off and allowed to cool to room 

temperature. 

 Once cool, the autoclaves were opened, and the resulting orange-red solution was 

set aside. The solution was allowed to crystallize for three days, revealing orange plate 

crystals. The crystals were collected by decanting off the remaining solution. The product 

crystals were washed thoroughly with acetone and allowed to dry under vacuum. The 

yield of the isolated crystals, based on U, was greater than 90%.    

Single-Crystal X-ray Diffraction 

 X-ray intensity data from an irregular orange chunk were collected at 300(2) K 

using a Bruker D8 QUEST diffractometer equipped with a PHOTON 100 CMOS area 

detector and an Incoatec microfocus source (Mo Kα radiation, λ = 0.71073 Å). The data 

collection covered 100% of reciprocal space to 2θmax = 65.2º, with an average reflection 

redundancy of 8.6 and Rint = 0.047 after absorption correction. The raw area detector data 
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frames were reduced and corrected for absorption effects using the SAINT+ and 

SADABS programs44. Final unit cell parameters were determined by least-squares 

refinement of 9910 reflections taken from the data set. An initial structural model was 

obtained with SHELXS using direct methods45. Subsequent difference Fourier 

calculations and full-matrix least-squares refinement against F2 were performed with 

SHELXL-201445 using the ShelXle interface46. Table 7.1 lists crystallographic data and 

selected refinement statistics. 

 The compound crystallizes in the monoclinic system. Systematic absences in the 

intensity data were uniquely consistent with space group, P21/n, which was confirmed by 

structure solution. The asymmetric unit consists of two independent uranium atoms, two 

cobalt atoms, seven fluorine atoms, four uranyl group oxygen atoms and nine water 

oxygen atoms with their associated hydrogen atoms. All atoms are located on general 

positions (Wyckoff site 4e) except for Co2, which is located on a crystallographic 

inversion center (site 2b). Alternatively, the asymmetric unit contains one [U2O4F7]6- 

repeating unit and one and a half Co(H2O)6
2+ cations, one of which is on an inversion 

center. All atoms were refined with anisotropic displacement parameters. Reasonable 

positions for the water hydrogens could be located from Fourier difference maps. They 

were refined isotropically with d(O-H) = 0.85(2) Å distance restraints, and with all H-H 

distances in each water molecule restrained to be similar within an effective standard 

deviation of 0.02 (SHELX SADI). Table 7.2 lists selected interatomic distances. 

Powder X-ray Diffraction (PXRD) 

 Powder X-ray diffraction data were collected on a Rigaku Ultima IV X-ray 

diffractometer utilizing Cu Kα radiation (λ = 1.5418 Å). Data were collected over the
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Table 7.1: Crystallographic and Refinement Data for [Co(H2O)6]3[U2O4F7]2 

 

 

 

 

 

 

 

 

 

 

 

 

Empirical Formula Co3 F14 H36 O26 U4 
Formula Weight (g/mol F.U.) 1847.2 
Temperature (K) 300(2) 
Wavelength (Å) 0.71073 
Crystal System Monoclinic 
Space Group P21/n 
a (Å) 9.1592(4) 
b (Å) 12.6138(5) 
c (Å 15.5892(6) 
β(°) 97.7671(10) 
Volume (Å3) 1784.53(13) 
Z 2 
Density (kg/m3) 3437.5 
Absorption Coefficient (mm-1) 19.593 
F(000) 1638 
Crystal Size (mm) 0.12 x 0.08 x 0.05 
Theta range for data collection 2.084° - 32.625° 
Reflections 57103 
Unique reflections 6502 
Completeness to θ = 32.575° 100% 
Data/Restraints/Parameters 6502/54/285 
Goodness of Fit on F2 1.045 
Final R Indices R1 = 0.0225, wR2 = 0.0384 
R indices (all data) R1 = 0.0301, wR2 = 0.0400 
Extinction coefficient 0.00106(2) 
Largest diff. peak and hole (e-/Å3) 1.368 and -1.079 
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Table 7.2: Selected Interatomic Distances (Å) for [Co(H2O)6]3[U2O4F7]2 

 U(1) - O(2) 1.777(2) 
 

Co(1) - O(14) 2.048(3) 
U(1) - O(1) 1.777(2) 

 
Co(1) - O(11) 2.051(3) 

   
Co(1) - O(12) 2.069(3) 

U(1) - F(2) 2.241(2) 
 

Co(1) - O(15) 2.082(3) 
U(1) - F(1) 2.2812(18) 

 
Co(1) - O(16) 2.115(3) 

U(1) - F(5) 2.2886(19) 
 

Co(1) - O(13) 2.116(3) 
U(1) - F(4) 2.3075(18) 

   U(1) - F(3) 2.3889(18) 
 

Co(2) - O(23) 2.058(2) 

   
Co(2) - O(23) 2.058(2) 

U(2) - O(3) 1.775(2) 
 

Co(2) - O(22) 2.063(3) 
U(2) - O(4) 1.779(2) 

 
Co(2) - O(22) 2.063(3) 

   
Co(2) - O(21) 2.090(3) 

U(2) - F(6) 2.222(2) 
 

Co(2) - O(21) 2.090(3) 
U(2) - F(7) 2.2830(18) 

   U(2) - F(1) 2.2864(18) 
   U(2) - F(4) 2.3256(18) 
   U(2) - F(3) 2.3928(18) 
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angular range of 5° - 65° 2θ, with a step size of 0.02°. PXRD data were collected on 

ground single crystals of the as-synthesized product, as well as on it’s thermal 

decomposition products. 

Optical Spectroscopy 

UV-visible Spectroscopy 

 UV-visible spectra were recorded using a Perkin-Elmer lambda 35 UV-visible 

scanning spectrophotometer used in diffuse reflectance mode. The instrument is equipped 

with an integrating sphere and the reflectance data was converted to absorbance internally 

via the Kubelka-Munk function47. Spectra were recorded over the 200 nm – 900 nm 

wavelength range. 

IR Spectroscopy 

 Infrared spectra were recorded with a Perkin-Elmer Spectrum 100 FT-IR 

spectrometer. The spectrometer is equipped with a diamond ATR cell to allow 

measurements on solid-state materials. The final spectrum is composed of 16 averaged 

scans. Spectra were recorded over the 4000 cm-1 – 600 cm-1 range. 

Magnetic Property Measurements 

The magnetic property measurements were performed using a Quantum Design 

MPMS3 SQUID magnetometer. ZFC and FC data were collected between 2 K – 300 K 

under an applied magnetic field of 0.1 T. Magnetization measurements were performed at 

2 K by sweeping the applied field between -5 T and 5 T. The data were corrected for 

radial offset and shape effects using the method put forth by Morrison48. 
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Thermal Properties 

 The thermal properties were probed using thermogravimetric analysis. TGA data 

were collected using an SDT Q600 DTA/TGA from room temperature to 900 °C under a 

100 mL/min nitrogen flow. The sample was heated in a silver lined alumina crucible at a 

rate of 10 °C/minute, held isothermal for one hour, then allowed to cool to room 

temperature. 

Energy Dispersive Spectroscopy (EDS) 

 Energy dispersive spectroscopy (EDS) was performed on product single crystals 

affixed directly to an SEM stub by carbon tape. EDS was performed using a Tescan Vega-

3 SEM equipped with a Thermo EDS attachment. The SEM was operated in low-vacuum 

mode with a 30 kV accelerating voltage and a 20 second accumulating time. Several 

crystals in the batch were analyzed to ensure results were representative of the bulk 

sample.   

Results and Discussion 

Crystal Structure 

 The most prominent structural characteristics of [Co(H2O)6]3[U2O4F7]2 are the 

one-dimensional chains running along the [101] direction, shown in Figure 7.1. The 

chains are built up of [U2O4F7] uranyl dimers that share a fluoride vertex. Each dimer is 

formed by two pentagonal bipyramids that are joined along one edge. Figure 7.2 shows 

the [U2O4F7] dimer as well as the local coordination of uranium in the [UO2F5] 

pentagonal bipyramid. Bipyramidal geometries are common in uranyl compounds and in 

this instance the uranyl oxide ligands in the axial positions point perpendicular to the 

[101] direction (perpendicular to the chains), leaving the equatorial fluoride ligands to
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Figure 7.1: Infinite Uranyl Fluoride Chains. The 1-D chains of uranyl fluoride dimers 
running parallel to the [101] direction. The chains are composed of [U2O4F7]3- dimers that 
are connected via a bridging fluoride. Uranium polyhedra are shown in dark green, 
oxygen is shown in red, and fluorine is shown in light green. 
 

 

 

 

 

 

Figure 7.2: Local Coordination and Dimers of Uranyl Centers. Left: The [U2O4F7] 
dimer that forms the 1-D chains in the title compound. The two uranium centers are 
bridged through F(3) and F(4) with U-F-U angles of 112.04° and 117.68° respectively. 
Right: The local coordination of the U(VI) ions, with typical uranyl (U=O) distances of 
~1.78 Å. The U-F distances range from 2.22 to 2.39 Å. Uranium polyhedra are shown in 
dark green, oxygen in red, and fluorine in light green. 
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participate in the building of the dimer units and connecting them into chains. Each dimer 

unit is slightly rotated about the U-F(1)-U bond in alternating fashion; presumably to 

reduce repulsion between pairs of uranyl oxides. 

 The uranyl chains are isolated from one another; however they are organized into 

pseudo-layers forming slabs. While one-dimensional chains are a common uranyl 

structural motif, two-dimensional uranyl sheets are much more common.  It is thought 

that the presence of fluoride in the equatorial positions of the uranyl polyhedra gives rise 

to a ‘tailor effect’33, which in this case favors the one-dimensional chain over the two-

dimensional sheet motif.  

 Each uranyl chain contributes a -3 overall charge to the structure, combining to 

contribute a -6 overall charge per unit cell. These anionic slabs are charge balanced by 

slabs of isolated Co(H2O)6
2+ octahedra, shown along with the cobalt local coordination in 

Figure 7.3. The neutral aqua ligands allow the full +2 charge of each cobalt center to 

contribute to balancing the anionic uranyl chains. Figure 7.4 gives an overall 

representation of the structure. This motif where slabs of condensed anionic uranium 

centers are balanced by hydrated, isolated transition metal centers is a fairly common 

occurrence among hydrothermally grown uranium materials49. 

When considering the formation of structures with reduced dimensionality, such 

as chains or slabs, the concept of solution speciation needs to be brought up as it is a 

potential influence on the structures that crystallize from solutions.  In the area of uranyl 

bearing hybrid materials the concept of speciation has been explored50 and a correlation 

between solution pH and primary building unit (PBU) was invoked based on solution 

phase studies that indicate that oligomeric species become more prevalent above pH 4.5,
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Figure 7.3: Hexa-aqua Cobalt Layer in [Co(H2O)6]3[U2O4F7]2. The layer of hexaaqua 
cobalt ions, which are isolated from each other. These ions serve to charge balance the 
anionic uranyl chains. Each cobalt ion is coordinated solely by six aqua ligands which 
form the basis for an extensive hydrogen bonding network. Cobalt polyhedra are shown 
in blue, oxygen in red, and hydrogen in black. 
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Figure 7.4: Overall Structure of [Co(H2O)6]3[U2O4F7]2. An overall structural depiction 
of [Co(H2O)6]3[U2O4F7]2. The uranyl fluoride chains form layers which are interspersed 
by the cobalt ions. The cobalt hexaaqua ions form an extensive H-bonding network both 
between terminal hydrogens and water oxygens as well between terminal hydrogens and 
fluorines from the uranyl polyhedra. Uranium polydra are shown in dark green, cobalt 
polyhedra are shown in blue, oxygen is shown in red, fluorine is shown in light green, 
and hydrogen in shown in black. 
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consistent with the crystallization of monomeric species at low pH.  In order to 

rationalize the existence of high yield, single product hydrothermal reactions, it was 

proposed that the organic linkers selectively remove a specific solution species, from 

among the many that are in equilibrium, and incorporate them into the final structure.  It 

is worth noting that even at high pH, however, monomeric species can be isolated and 

under acidic conditions, dimeric species51, 52.  Nonetheless, the concept of speciation is 

important and should be considered in all solution based crystallizations, even those not 

containing organic complexing agents or those from molten salts53.  

 It would be consistent to hypothesize that the pH dependence of hydrolysis of the 

uranyl species, which favors oligomeric species at high pH, could be used to selectively 

crystallize monomeric species under low pH conditions.  The hydrothermal 

crystallization of uranyl fluorides, in the absence of organic complexing agents, could be 

one way to test this hypothesis by structurally characterizing the crystals that form.  The 

description herein of the hydrothermal crystallization of [Co(H2O)6]3[U2O4F7]2 in HF, 

consisting of infinite uranyl chains, seems to contradict this hypothesis.  One reason for 

this might be the fact that fluoride ligands readily bridge between uranyl centers, both 

with U(IV) and U(VI) species11, 14, 54.  Consequently, it would seem reasonable to look 

for an additional explanation governing the formation of monomeric, dimeric, chain and 

sheet structures in uranyl fluoride systems. 

Understanding the Drive to Reduce Dimensionality 

 In order to understand which coordination environment favors reduced 

dimensionality, we conceptualized common uranyl oxide polyhedra and modeled the 

systematic substitution of the equatorial oxide ligands with fluoride ligands. For 
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consistency, we decided to focus on fluorides only and to ignore other halides and 

peroxides. In regards to the former, the heavier halides tend to be less prone to bridging 

even than F, and so we can expect this reduction in dimensionality to be exaggerated, 

however there are few reports of these in the literature. The latter could be considered a 

charge analog to fluoride, however, with the caveat that it exists as a bidentate unit, (O2)2-

, that could possibly influence the structure of the uranyl polyhedra.  An extension of 

peroxides would be the inclusion of oxalates55, 56 or tartrates, but that quickly moves 

beyond the scope of this paper and the argument we are trying to present; namely the 

relationships between identical polyhedra with various charges and how they influence 

the bulk crystal structure. An example of this concept is the peroxide mineral studtite, 

whose crystal structure was reported by Burns and Hughes57. Studtite can be considered a 

1-D uranyl chain material; with uranyl polyhedra edge-sharing through bidentate peroxo 

ligands. As we discussed previously, it is true that the (O2)2- peroxo ligand has a reduced 

anionic charge due to O-O interactions, however the bidentate nature of the peroxo group 

and the short O-O distance within the ligand distort the polyhedron, which serves to 

direct the structure into chains. In this case, the reduced dimensionality results from 

multiple causes, whose analysis is beyond the scope of this work.  

The conceptualized uranyl oxide polyhedra were modeled via the systematic 

substitution of the equatorial oxide ligands with fluoride ligands and we compiled these 

results for uranyl fluorides in Table 7.3. Once we derived all possible polyhedra with 

bipyramidal geometries having coordination numbers between 6-8, we began 

constructing common structural motifs by condensing identical polyhedra. Care was 

taken to consider all possible connectivities for chain and sheet motifs. These results are



www.manaraa.com

Table 7.3: Hypothetical Uranyl Structural Units and their Charges 

189 



www.manaraa.com

190 



www.manaraa.com

 191 

also shown in Table 7.3. Finally, we analyzed existing structures and determined which 

model coordination unit they matched. These structures are denoted by letters in Table 

7.3, and identified in Table 7.4. 

 In order to determine if any trends existed in these data, we plotted the results, 

shown in Table S1. The plot shows net anionic charge per polyhedron as a function of 

structural unit, from 0-D structures to 2-D sheet structures, and is shown in Figure 7.5. 

The shape of each point denotes the coordination environment, and the color of each 

point denotes the amount each polyhedron was fluorinated. In order to see how known 

structures fit into this scheme, we determined where the polyhedra of several reported 

uranyl systems fell on the plot, and outlined the appropriate point in blue. In order to 

broaden the availability of real structures, we considered hydroxyl groups as a suitable 

analog for fluorine and treated them as such. 

 By examining Figure 7.5, it is immediately obvious that an increase of 

dimensionality will reduce the net anionic charge per polyhedron. This is due to the fact 

that ligands become shared between uranyl centers, spreading the same charge between 

two or more ions. Also readily apparent is the fact that fluorinating a polyhedron has the 

same effect as reducing the anionic charge. By combining fluorination with increased 

dimensionality we find that some hypothetical combinations result in non-physical 

structures with a net positive polyhedral charge. As was discussed previously, we 

consider this to be energetically unfavorable, and highly unlikely to exist; an extensive 

search of the literature failed to turn up a single example. We highlight this fact by 

including points on Figure 7.5 that represent a selection of 10 reported structures.
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Table 7.4: Reference Materials Pertaining to Table 7.3. 

 

 

 

 

 

 

 

 

Letter Structure Reference 
a [Co(H2O)6]3[U2O4F7]2 This Work 
b K5U5O17(OH) 18 
c A3(UO2)F5 29 
d Na3(UO2)2F3(OH)4(H2O)2 28 
e A2MnU3O11 19 
f K4Sr4[(UO2)13(B2O5)2(BO3)2O12] 64 
g K4[(UO2)5(BO3)2O4]•H2O 51 
h K15[(UO2)18(BO3)7O15] 51 
i K4M(OH)3(H2O)9[(UO2)12O7(OH)13] 37 
j K4U5O16Cl2 25 
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Figure 7.5: Plot of Hypothetical Uranyl Structural Units Versus their Anionic 
Charge. A plot of anionic charge versus structural unit for a set of hypothetical uranyl 
structural units. The structural units range from isolated polyhedra (0-D) to model uranyl 
sheets (2-D). The shape of each point represents the uranyl coordination (square = square 
bipyramid, pentagon = pentagonal bipyramid, hexagon = hexagonal bipyramid). The 
color of each point represents the amount of fluoride substitution, and follows the color 
scale on the right side of the figure. Hypothetical units that correspond to real structures 
are highlighted in blue. 
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At the top end of the graph, the high anionic charge end, we find very few 

reported materials. We hypothesize that the reason for this is two-fold: firstly low-

dimensional uranyl structures are difficult to prepare synthetically and, therefore, are not 

plentiful in the literature and not extensively studied, and secondly because we 

hypothesize that polyhedra with high anionic charges should be less stable due to the fact 

that it is difficult to fit enough cations in these structures to adequately balance the 

anionic charge. Although this intuitively makes sense, it is difficult to quantify and we 

suspect there is not a hard limit, but rather a general trend. An expansion of the library of 

low-dimensional uranyl materials is warranted in order to test our hypothesis. 

Powder X-Ray Diffraction (PXRD) and EDS 

  PXRD was used to confirm the phase purity of the as-synthesized material. 

Product crystals were ground in an agate mortar and loaded into a sample well for 

analysis.  The resulting powder diffraction pattern was compared with the calculated 

powder pattern derived from the single-crystal structure refinement. The diffraction 

pattern was found to be in excellent agreement with the calculated pattern with no extra 

peaks, indicating that the bulk sample represents a phase pure sample of 

[Co(H2O)6]3[U2O4F7]2. The powder diffraction pattern can be seen compared to the 

calculated pattern in Figure 7.6. 

 EDS was used to qualitatively identify the constituent elements in the reported 

single-crystals. EDS identified all constituent elements (Co, U, O, F) except for 

hydrogen, which is not detectable using the available instrumentation, and confirmed the 

absence of extraneous elements in the crystals. 
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Figure 7.6: Calculated and Observed PXRD Patterns of [Co(H2O)6]3[U2O4F7]2. The 
powder diffractogram of [Co(H2O)6]3[U2O4F7]2 is shown from 5° - 65° 2θ in red. The 
black diffractogram was calculated from the CIF obtained from the single crystal 
structure refinement. The two patterns agree well with no extra peaks, indicating a 
crystalline phase pure sample. The hump which appears at low angles in the observed 
pattern has been determined to be iron x-ray fluorescence which arises from our steel 
sample holders, not an amorphous component to the sample. 
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Optical Properties 

 The UV-Vis spectrum is expected to have contributions from both d-d electronic 

transitions within the cobalt ion as well as from weak uranyl absorptions. CoII(H2O)6
2+ is 

a high-spin d7 ion, for which the Tanabe-Sugano diagram for octahedral d7 ions is a 

useful tool for assigning the absorption bands58. The observed spectrum contains two 

main features: the absorption edge onset, which occurs below 350 nm, as well as a broad 

absorbance band from 350 – 575 nm. The observed UV-vis spectrum can be seen in 

Figure 7.7. 

 The Tanabe-Sugano diagram reveals three possible transitions for the high-spin d7 

ion from the quartet ground state of 4T1(P). The lowest energy transition, 4T1(F)  4T2 is 

known to occur in the infrared range and is therefore not observable in this spectrum59. 

The other two transitions, 4T1(F)  4T1(P) and 4T1(F)  4A2, both occur at roughly 500 

nm and below. These transitions usually overlap, explaining the broad absorbance band59. 

In the observed spectrum, there is a fine structure appearing on top of the Co d-d 

absorbance band that is attributed to the uranyl absorptions, which also occur below 500 

nm60. 

 The major features of the IR spectrum can be attributed to the aqua ligands 

coordinated to the cobalt ions. The broad band at 3400 cm-1 is characteristic of O-H 

stretching modes, while the O-H bending modes can be seen above 1500 cm-1. In addition 

to the O-H vibrational modes, the intense peak at 900 cm-1 is attributed to the uranyl U-O 

stretch60. The vibrational spectrum is shown in Figure 7.8, with the band assignments 

displayed in Table 7.5 
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Figure 7.7: The UV/Visible Spectrum of [Co(H2O)6]3[U2O4F7]2. The UV-visible 
spectrum of [Co(H2O)6]3[U2O4F7]2. The spectrum is dominated by the absorption band 
below 350 nm, however also contains bands corresponding to Co d-d transitions and U f-f 
transitions. The intense band from 350 nm to 580 nm represents the 4T1(F)  4T1(P) 
transition, and the fine structure on top of the band represents the uranium f-f transitions. 
The shoulder from 580 nm – 720 nm represents the 4T1(F)  4A2 of cobalt.  
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Figure 7.8: The IR Spectrum of [Co(H2O)6]3[U2O4F7]2. The infrared vibrational 
spectrum of [Co(H2O)6]3[U2O4F7]2. The spectrum is dominated by bands at ~3500 cm-1, 
~1600 cm-1, and ~900 cm-1. These bands are assigned to various stretching modes in 
Table 7.5. 
 

 

 
 
 

Table 7.5: IR Band Assignments for [Co(H2O)6]3[U2O4F7]2. 

 Band Vibrational Mode Structural Feature 
3500 cm-1 O-H Stretching Co(H2O)6 Octahedra 
1600 cm-1 H-O-H Bending Co(H2O)6 Octahedra 
900 cm-1 O=U=O Stretching (U2O4F7)∞ Chains 
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Magnetic Properties 

The magnetism of [Co(H2O)6]3[U2O4F7]2 consists only of contributions from the 

high-spin CoII ions. Since the cobalt ions are isolated and separated by a relatively large 

distance (approximately 5.8 angstroms at a minimum), we do not expect to observe 

evidence of magnetic coupling between the cobalt centers. In line with our expectations, 

[Co(H2O)6]3[U2O4F7]2 is paramagnetic down to the lowest temperatures measured, with 

only very slight deviation from Curie-Weiss behavior below 5 K. The inverse of the 

molar magnetic susceptibility was fit to the Curie-Weiss law from 20 K to 300 K. The 

effective magnetic moment and the Weiss temperature were extracted from the fit. Figure 

7.9 shows the Curie-Weiss fit. The effective moment per formula unit was found to be 

8.71 μB, which agrees well with a calculated spin-only moment of 8.48 μB. The Weiss 

temperature of -9.59 K suggests weak antiferromagnetic interactions; however we do not 

observe any evidence for magnetic ordering. The magnetic susceptibility and 

magnetization data can be seen in Figure 7.10. 

Thermal Properties 

The TGA curve shows three distinct weight loss events, ending with the thermal 

decomposition of [Co(H2O)6]3[U2O4F7]2 to the antiferromagnet CoUO4
61. The complete 

TGA curve is shown in Figure 7.11. The residue after each weight loss step was isolated 

and analyzed via powder X-ray diffraction. The resulting powder patterns can be seen in 

Figure 7.12. The first thermal event occurs at 100° C and corresponds to a 15.5% weight 

loss. The decomposition product was isolated and identified by powder X-ray diffraction 

as CoUO2F4 • 4H2O, representing a partial dehydration62. The second thermal event 

corresponds to a small weight loss of 3.73% and begins at 600° C. This corresponds to
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Figure 7.9: Curie-Weiss Plot for [Co(H2O)6]3[U2O4F7]2. The Curie-Weiss plot for 
[Co(H2O)6]3[U2O4F7]2. The data shown in red is the inverse magnetic susceptibility taken 
from the zero-field cooled measurement. The data was fit using a linear regression and 
the extracted constants are shown. The extracted effective moment agrees well with 
calculated spin-only moments for Co(II). 
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Figure 7.10: Susceptibility and Magnetization Plots for [Co(H2O)6]3[U2O4F7]2. Left: 
The magnetic susceptibility and inverse magnetic susceptibility of [Co(H2O)6]3[U2O4F7]2. 
The ZFC and FC data overlay perfectly, suggesting the absence of field dependence. 
Right: The magnetization versus field plot of [Co(H2O)6]3[U2O4F7]2. The lack of 
hysteresis confirms that no field dependence is observed. 
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Figure 7.11: TGA Curve of [Co(H2O)6]3[U2O4F7]2. TGA curve of 
[Co(H2O)6]3[U2O4F7]2 heating from room temperature to 900° C under nitrogen gas over 
the course of two hours.  The TGA curve shows three distinct weight loss events, 
culminating in the formation CoUO4 as the final thermal product. This results in an 
overall Co:U ratio of 1:1, which is a change from the original ratio of 3:4. The thermal 
decomposition is a complicated process involving the loss of water, which likely occurs 
as a combination of dehydration and dehydrogenation via the loss of HF during heating. 
The loss of HF explains the oxide final product when the TGA curve was measured under 
inert N2. 
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Figure 7.12: Post-TGA PXRD Patterns of [Co(H2O)6]3[U2O4F7]2. Powder 
diffractograms of bulk samples of [Co(H2O)6]3[U2O4F7]2 after heating for 12 hours at 
various temperatures. Left: Heating at 100° C. The pattern was identified as Co(UO2)F4 • 
4H2O. Middle: Heating at 600° C. The pattern corresponds to CoU3O10 and unidentified 
phases. Right: Heating at 900° C. The pattern is primarily CoUO4 with additional 
CoU3O10 and small amounts of unidentified products. Further heating did not drive the 
decomposition further towards CoUO4. 
 

,
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the final dehydration step and results in CoU3O10 plus several unidentified phases, which 

are likely fluoride products63. The final decomposition which occurs gradually above 

600° C is a result of the loss of fluorine and gives the decomposition product CoUO4 by 

900° C. Scheme 7.1 shows the progression of the formation of the major phases during 

thermal decomposition: 

[𝐶𝐶𝐶𝐶(𝐻𝐻2𝑂𝑂)6]3[𝑈𝑈2𝑂𝑂4𝐹𝐹7]2  


100° 𝐶𝐶
 𝐶𝐶𝐶𝐶(𝑈𝑈𝑂𝑂2)𝐹𝐹4  •  4𝐻𝐻2𝑂𝑂 


600° 𝐶𝐶

 𝐶𝐶𝐶𝐶𝑈𝑈3𝑂𝑂10  


900° 𝐶𝐶
 𝐶𝐶𝐶𝐶𝑈𝑈𝑂𝑂4 

Scheme 7.1 

All of the identified phases can be seen on the PXRD patterns shown in Figure 7.12. 

Conclusions 

The synthesis of new uranium containing fluorides continues to expand and 

advance our understanding of uranium chemistry. In particular, the structures obtained 

from the use of hydrothermal syntheses improves our understanding of the conditions 

under which uranium is or is not reduced, which is important for the nuclear waste 

industry. This structure of [Co(H2O)6]3[U2O4F7]2 exhibits one-dimensional uranyl chains 

consisting of corner-shared [U2O4F7]3- dimers. Although uranyl materials do possess one-

dimensional structures, two-dimensional sheets are much more common. We believe this 

reduction in dimensionality was caused by the presence of fluorine, which allows the 

uranyl cations to better compensate the anionic charge. 

We developed a system for analyzing the dimensionality of structures, and believe 

that this can be generalized to apply to other anions, such as hydroxide and chloride, and 

perhaps be extended to include aqua ligands, to help predict which compositions are 

likely to result in a dimensionally reduced structure. Furthermore, we provide a method 

for researchers to target which existing materials may be susceptible to post-synthetic 



www.manaraa.com

205 

dimensional reduction. By analyzing the plot shown in Figure 5, researchers may locate 

structures with low anionic charge and treat them with fluoride to push them toward an 

unallowed cationic regime, thus forcing dimensional reduction. 

The thermal behavior of [Co(H2O)6]3[U2O4F7]2 suggests that we may be able to 

use low-dimensional pseudo-molecular structures as an intimate mixture of starting 

elements for the synthesis of desirable oxides. In this case, we have shown that the title 

compound can be decomposed thermally to produce the antiferromagnetic CoUO4 

phase61. The idea of using low dimensional crystals as precursors to more condensed 

oxide materials will continue to be explored in our future work. In order to build a greater 

library of low-dimensional crystal structures, we will continue to use fluoride ligands to 

reduce the negative charge felt by metal cations to encourage dimensional reduction to 

0D, and 1D materials. 
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CHAPTER 8: 

SUPERCRITICAL SYNTHESIS AND TOPOLOGICAL ANALYSIS OF K5U5O17(OH)* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Adapted from Felder, J. B.; Smith, M. D.; zur Loye, H. –C. Cryst. Eng. Comm. 2017 19, 

3499-3505 with permission from the Royal Society of Chemistry 
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Introduction 

 The synthesis and investigation of uranium containing materials continues to be a 

vital endeavor in order to understand better the processes by which radioactive waste 

interacts with the environment, and also for the development of new wasteforms and 

advanced fuel rod materials1–5.  While uranium offers rich redox chemistry, displaying 

oxidation states ranging from +3 to +6, the +6 state is by far the most common, followed 

by +4. Even though much work has been done on U(VI) containing materials6–13, there 

remains a vast phase space yet to be explored. 

 It is impossible to discuss U(VI) chemistry without discussing the uranyl ion 

(UO2
2+), which is nearly ubiquitous among U(VI) materials. The uranyl ion is formed by 

strong bonding of the uranium center to two oxide ligands 180° apart (O=U=O). The 

uranyl oxygens rarely interact with other cations14–16, however uranyl centers frequently 

interact via equatorial ligands (oxide, hydroxide, halide, etc.). This equatorial bonding 

motif leads to uranyl polyhedra that exhibit essentially exclusively bipyramidal 

coordination environments. This tendency to form bipyramids coupled with the 

reluctance of the uranyl oxygens to interact leads to coupling between uranyl centers in 

the equatorial plane, which generally results in uranyl sheet structures17, 18. 

 Uranyl sheet-anions are often held together by large alkali/alkaline earth cations, 

or similar cations for charge balancing. These uranyl sheets can form a large variety of 

topologies that can be used to compare uranyl compounds. Burns et al. developed a 

method of determining the sheet-anion topology of uranyl sheet compounds, which is 

often used to classify and group uranyl materials19. The continued discovery of new 

uranyl sheet topologies20–25 drives further research into uranyl compounds and serves as 
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evidence to the fact that there is still much work to be done on this diverse class of 

materials. 

 The tendency of uranium to oxidize at high temperatures suggests that many 

U(VI) compounds can be synthesized in a straightforward manner via the traditional 

solid-state ceramic route26, 27. It is often desirable, however, to create these compounds in 

the form of high quality single crystals, which necessitates a different synthetic approach. 

Among the many advantages of single crystals, not least is the ability to perform highly 

accurate structure determinations by single crystal diffraction measurements. Uranyl 

crystals have been synthesized by a wide variety of crystal growth techniques including 

flux growth28–34, hydrothermal growth20, 21, and mild hydrothermal growth35–37. 

Typically there is a large temperature gap between the mild hydrothermal regime (up to 

~200° C) and the supercritical regime (≥~500° C). In this work, we begin to explore the 

intermediate temperature range between these two regimes by operating at just above the 

critical point of water (374° C). 

 Herein we report on the supercritical synthesis of K5U5O17(OH) at 400 °C 

resulting in plentiful single crystals. K5U5O17(OH) is closely related to the Na analog 

previously reported by Lii; Na5U5O17(OH) 21. While structurally closely related, 

K5U5O17(OH) crystallizes in a different space group, though the difference is subtle and 

they are indistinguishable by visual inspection. The uranyl sheet-anions are identical, and 

we report herein the first topological analysis of this sheet structure to date. 
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Experimental 

Materials and Methods 

Caution: Although the uranium oxide used in this experiment contains depleted uranium, 

standard precautions for handling radioactive materials should be observed. All 

uranium-containing materials were handled exclusively in labs specially designated for 

the study of radioactive materials. 

 
Caution: The synthetic strategy employed in this experiment generates high pressures. 

Extreme caution should be exercised to ensure that the pressure limits of the vessel are 

not exceeded. High-pressure syntheses were conducted in a specially designated room 

dedicated to high-pressure synthesis. 

 
 The following materials were used as received without further modifications: UO3 

(99%, International Bio-Analytical Laboratories), KOH (ACS Grade, Fisher Scientific), 

and deionized water. For this synthesis, a stock solution of 5M KOH was prepared.  

 1 mmol of UO3 was mixed with 2 mL of 5M KOH solution inside a 5-inch long 

silver tube that had been welded shut on one end. The tube was immersed in liquid 

nitrogen to freeze the liquid, and the open end of the tube was then crimped and welded 

shut using a TIG welder. Once welded, the tube was allowed to return to room 

temperature. The tube was transferred to a Parr Instrument Company HAST-C pressure 

vessel rated to 5700 psi at 600° C. Deionized water was added to the pressure vessel to 

just over the fill level of the silver tube to act as counterpressure. 

 The pressure vessel was sealed and heated in a programmable furnace to 400° C 

for 24 hours, then slowly cooled to 350° C, after which point the furnace was shut off and 
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allowed to cool to room temperature. The pressure inside the vessel was estimated to be 

5000 psi at the target temperature of 400°. Once cool, the pressure vessel was opened and 

the silver tube removed. The tube was cut open and the mother liquor was decanted 

revealing small, high quality, orange plate crystals. The crystals were washed with water 

and acetone. The product was then allowed to dry under vacuum before being chosen for 

structure determination. The final product was determined to be present in nearly 

quantitative yield based on uranium. 

Single-Crystal X-ray Diffraction 

X-ray intensity data from a yellow triangular plate crystal were collected at 303(2) 

K using a Bruker D8 QUEST diffractometer equipped with a PHOTON 100 CMOS area 

detector and an Incoatec microfocus source (Mo Kα radiation, λ = 0.71073 Å)38. The data 

collection covered 99.8% of reciprocal space to 2θmax = 70.31º, with an average reflection 

redundancy of 8.0 (Laue group 2/m) and Rint = 0.038 after absorption correction. Though 

the correct crystal symmetry is primitive monoclinic, indexing of several crystals gave an 

apparent C-centered orthorhombic unit cell of a = 8.05 Å, b = 11.45 Å, c = 20.01 Å, V = 

1844 Å3. Though metrically consistent with this cell, the higher symmetry is easily 

dismissed upon examining the Rint value of 0.51 for the orthorhombic system. Similar Rint 

statistics were also obtained for various C-centered monoclinic cells. The raw area 

detector data frames were reduced and corrected for absorption effects using the SAINT+ 

and SADABS programs38. Final unit cell parameters were determined by least-squares 

refinement of 9824 reflections taken from the data set. An initial structural model was 

obtained with dual-space direct methods using SHELXT39. Subsequent difference 
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Fourier calculations and full-matrix least-squares refinement against F2 were performed 

with SHELXL-201439 using the ShelXle interface40. 

The compound crystallizes in the monoclinic system. Systematic absences were 

consistent with space groups P21 and P21/m, the latter of which was confirmed by 

structure solution. The asymmetric unit consists of three uranium atoms, three potassium 

atoms, and 11 oxygen atoms. All atoms are located on general positions (site 4f), except 

for U(3), K(3) and O(8)–O(10), which are located on mirror planes (site 2e). O(11) was 

refined on a general position but is disordered across the inversion center at 0,0,½ (site 

2c), and was refined with half-occupancy. All atoms were refined with anisotropic 

displacement parameters. In early refinement stages, O(11) was refined on the inversion 

center of site 2c. This resulted in an abnormally large prolate anisotropic displacement 

parameter with U(3)/U(1) = 5.6. Refining O(11) displaced slightly from the inversion 

center resulted in a normalized ellipsoid (U(3)/U(1) = 2.6) and a stable refinement. The 

two-fold disorder model for O(11) was therefore retained. After location and anisotropic 

refinement of all U, K and O atoms, and modeling of the O(11) disorder, the derived 

crystal composition is K5U5O18. This generates an average uranium oxidation state of 

+6.2, which is physically unreasonable. The most reasonable explanation is the presence 

of a hydroxyl group among the oxide ions. A reliable position for a charge-balancing 

hydrogen atom could not be located by Fourier difference synthesis. The most likely site 

is bonded to the disordered oxygen atom O(11). O(11) resides in the most spacious 

coordination environment of all the oxygen atoms, coordinated to two symmetry-

equivalent U(1) centers at U(1)-O(11) = 2.42 and 2.43 Å, and two K atoms at 3.26 and 

3.54 Å, leaving ample space for an H atom. O(11) is bounded by eight neighboring 
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oxygen atoms at distances in the range 2.76 - 3.08 Å, all typical hydrogen-bonding 

distances. A hydroxyl hydrogen bonded to O(11) is therefore potentially disordered over 

several possible hydrogen-bonding locations. The small hydrogen atom scattering factor, 

the disorder of the parent oxygen atoms O(11), and the potential disorder of the hydroxyl 

hydrogen itself, are the reasons this proton could not be located by Fourier difference 

synthesis. Location of a hydrogen on the half-occupied atom O(11) (i.e. a disordered half-

occupied hydroxyl group) gives an electroneutral composition of K5U5O17(OH), 

assuming all U6+ ions. Trial refinements of the potassium and uranium site occupancies 

showed no deviation from unity occupation in all cases. The largest residual electron 

density peak and hole in the final difference map are +2.62 and -1.46 e-/Å3, located 0.75 

Å and 1.14 Å from U(3), respectively. Table 8.1 shows crystallographic and refinement 

information, and Table 8.2 shows selected bond distances. 

The analogous Na5U5O17(OH) was previously reported to crystallize in the space 

group P21/c 21. We have found that atoms U(1), U(2), and O(3) in the potassium structure 

violate the c-glide plane symmetry operator, which confirms our choice of P21/m over 

P21/c. We hypothesize that the increased ionic radius of K over Na causes a subtle 

change in the structure, which results in the shifting of space groups from the Na phase. 

Powder X-ray Diffraction 

 The product single-crystals were ground into polycrystalline powder for PXRD 

measurements. Powder XRD data were collected on a Rigaku Ultima IV diffractometer 

using Cu Kα (λ = 1.5418 Å) radiation. Data were collected over the 5° - 65° two-theta 

range with a step size of 0.02°. 
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Table 8.1: Crystallographic Data and Refinement Information for K5U5O17(OH) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Empirical Formula H K5 O18 U5 
Formula Weight (g/mol F. U.) 1674.66 
Temperature (K) 303(2) 
Wavelength (Å) 0.71073 
Crystal System Monoclinic 
Space Group P21/m 
Unit Cell Parameters:  

a (Å) 6.9926(2) 
b (Å) 20.0065(5) 
c (Å) 7.0055(2) 
β (°) 109.8270(8) 

Volume (Å3) 921.95(4) 
Z 2 

Density (Mg/m3) 6.032 
Absorption Coefficient (mm-1) 44.977 
F(000) 1400 
Crystal Size (mm) 0.100 x 0.060 x 0.040 
Theta Range for Data Collection 3.091 – 35.157 
Reflections 33455 
Independent Reflections 4195 (Rint = 0.0382) 
Completeness to theta = 35.155° 99.8% 
Data/Restraints/Parameters 4195 / 0 / 140 
Goodness of Fit on F2 1.138 
Final R Indices R1 = 0.0197 wR2 = 0.0424 
R Indices (all data) R1 = 0.0240 wR2 = 0.0434 
Extinction Coefficient 0.00120(3) 
Largest Diff. Peak and Hole (e-/Å3) 2.616 and -1.465 
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Table 8.2: Selected Interatomic Distances (Å) for K5U5O17(OH) 

 
U(1) – O(1) 2.226(2) K(1) – O(1) 3.266(3) 
U(1) – O(2) 2.287(3) K(1) – O(3) 3.196(3) 
U(1) – O(3) 2.412(3) K(1) – O(4) 2.734(3) 
U(1) – O(5) 1.852(3) K(1) – O(5) 2.615(3) 
U(1) – O(7) 1.840(3) K(1) – O(6) 2.757(3) 
U(1) – O(11) 2.42(3) K(1) – O(7) 2.758(3) 
U(2) – O(1) 2.236(2) K(1) – O(9) 2.782(3) 
U(2) – O(2) 2.200(2) K(1) – O(10) 2.629(3) 
U(2) – O(3) 2.237(2) K(2) – O(2) 3.320(4) 
U(2) – O(4) 1.864(3) K(2) – O(4) 2.770(3) 
U(2) – O(6) 1.862(3) K(2) – O(5) 2.724(3) 
U(2) – O(8) 2.1766(13) K(2) – O(6) 2.643(3) 
U(3) – O(1) 2.354(2) K(2) – O(7) 2.654(3) 
U(3) – O(3) 2.281(2) K(2) – O(11) 3.26(3) 
U(3) – O(3) 2.281(2) K(3) – O(4) 2.771(3) 
U(3) – O(8) 2.456(4) K(3) – O(6) 2.776(3) 
U(3) – O(9) 1.839(4) K(3) – O(8) 3.351(5) 
U(3) – O(10) 1.838(4) K(3) – O(9) 2.656(4) 
  K(3) – O(10) 2.755(4) 
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Optical Spectroscopy 

 UV-visible spectra were recorded using a Perkin Elmer lambda 35 UV/visible 

scanning spectrophotometer, used in the diffuse reflectance mode, equipped with an 

integrating sphere. Spectra were recorded in the range of 200 – 900 nm. The reflectance 

data were automatically converted to absorbance by the instrument via the Kubelka-

Munk function41.  

 Fluorescence data were collected on a Perkin Elmer LS 55 fluorescence 

spectrometer. Excitation spectra were recorded from 200 – 450 nm, and emission spectra 

were recorded from 450 – 900 nm. The sample was excited at the excitation max 

wavelength of 425 nm. All optical spectroscopy data were collected on polycrystalline 

powders obtained by finely grinding single crystals. 

 Infrared spectroscopy was performed on ground single crystals using a 

PerkinElmer spectrum 100 FT-IR spectrometer. The spectrometer utilizes a diamond-

ATR attachment to operate in attenuated total reflectance mode. The IR spectrum was 

recorded in the spectral range of 4000 cm-1 – 650 cm-1. 

Energy Dispersive Spectroscopy (EDS) 

 Energy dispersive spectroscopy was performed directly on product single crystals 

mounted on an SEM stub with carbon tape. EDS was performed with a Tescan Vega-3 

SEM equipped with a Thermo EDS attachment. The SEM was operated in low-vacuum 

mode with a 30 kV accelerating voltage and 20 second accumulating time. 
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Results and Discussion 

Synthetic Considerations 

 Hydrothermal crystal growth is a well-established method for crystal growth and 

phase discovery. There has been much work in both the mild hydrothermal regime (≤ 

200°) and supercritical regime (>374° C), especially >450° C. It is suspected that these 

two temperature regimes are capable of yielding quite different results when used to grow 

crystals from similar starting materials. 

 We are interested in exploring the synthetic space of intermediate hydrothermal 

growth conditions, specifically in the temperature ranges between 300° C and 450° C. 

The reported syntheses at 400° C show that materials usually grown at much higher 

temperatures (≥600° C) can be made at more intermediate temperatures, yet still produce 

different results from the now-common mild hydrothermal methods (<200 °C). 

Energy Dispersive Spectroscopy (EDS) and Powder X-ray Diffraction (PXRD) 

 EDS was used prior to single crystal X-ray diffraction data collection as a non-

destructive, qualitative elemental analysis. EDS qualitatively confirmed the presence of 

K, U, and O in the product single crystals. EDS was performed on several crystals in a 

batch to confirm that the results are representative of the whole.  

 The collected powder diffraction pattern was compared to the calculated powder 

pattern obtained from the crystallographic information file (.cif). The observed pattern 

matched the calculated pattern with no extra peaks, indicating the sole presence and 

phase-purity of K5U5O17(OH). The PXRD patterns and difference map can be seen in 

Fig. 8.1. 
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Figure 8.1: PXRD Pattern of K5U5O17(OH). The powder x-ray diffraction pattern of 
K5U5O17(OH) compared with the calculated pattern derived from the .cif. Observed data 
is shown in red, and the Le Bail fit is shown in black. Peak positions are marked with 
blue lines, and the difference map is shown as green. 
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Crystal Structure 

 K5U5O17(OH) adopts a layered three-dimensional structure consisting of two-

dimensional uranium-oxide layers separated by potassium ions. The two-dimensional 

sheets are formed from corner and edge sharing uranyl polyhedra, with the uranyl 

oxygens extending into the interlayer space, and the equatorial oxygens participating in 

the 2D sheet connectivity. Figure 8.2 shows a depiction of the overall structure. This type 

of edge sharing is extremely common among uranyl materials, and gives rise to a large 

number of uranyl sheet materials 10, 15, 22–24. 

 The uranyl sheet-anion U5O17(OH)5- is built of three unique uranyl coordination 

environments that are connected via edge and corner sharing, as shown in Figure 8.3. 

U(1) is coordinated by seven oxide anions, forming a regular uranyl pentagonal 

bipyramid, where the axial oxide anions are the uranyl oxygens. U(2) is coordinated by 

six oxide anions forming a highly distorted octahedron, again with the axial oxygens 

participating in the short uranyl bonds. Finally, U(3) is coordinated by six oxygens and a 

hydroxyl ion, forming a distorted pentagonal bipyramid.  

 The U(1) pentagonal bipyramid can be thought of as the central unit in the 2D 

sheet. It is edge sharing with two U(2) octahedra, and corner sharing with two more. It 

also is edge sharing with two U(3) pentagonal bipyramids. This arrangement creates 

triangular voids along the edge formed by the two O(3) ions. The U(2) octahedra share 

opposite edges with a U(1) and a U(3) pentagonal bipyramid and corner share with one 

U(1) and two U(3) pentagonal bipyramids as well as one U(2) octahedron. The U(3) 

pentagonal bipyramids share edges with one each of U(1), U(2), and U(3) polyhedra, as 

well as corners with two U(2) octahedra. The final vertex of the U(3) pentagonal 
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Figure 8.2: The Overall Structure of K5U5O17(OH). A polyhedral view of 
K5U5O17(OH). The structure consists of uranyl sheets (green) separated by potassium 
(maroon) ions. Oxide ions are shown in red. Hydroxyl ions cannot be seen from this 
view. 
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Figure 8.3: Uranyl Sheet and U Local Environments in K5U5O17(OH). The uranyl 
sheet-anion of K5U5O17(OH). To the right are shown the local coordination environments 
of the three unique uranium ions. U(1) forms a regular pentagonal bipyramid, while U(2) 
and U(3) show distorted coordination environments. Uranium polyhedra are shown in 
green, oxide ions in red, and hydroxyl ions in black. 
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bipyramid is formed by the hydroxyl group, which it shares with another U(3) pentagonal 

bipyramid. Figure 8.3 shows the uranyl oxide sheet along with the local uranium 

coordination environments. 

 There are three unique potassium sites, which are identified by their positions 

between the uranyl sheets. The potassium coordination environments can be viewed in 

Figure 8.4. K(1) is coordinated by eight oxygens, forming a bicapped octahedron. 

Looking down the a axis, K(1) lies underneath the edges U(1) shares with U(3), and is 

completely covered by the uranyl sheet. The K(1) ions share an edge to form dimers.  

 K(2) ions are coordinated by seven oxygens and one hydroxyl group forming 

bicapped trigonal antiprisms. These antiprisms share edges along the c axis forming 

infinite chains. K(3) ions are coordinated by seven oxygens, forming capped trigonal 

antiprisms that are isolated from one another. When combined, the three potassium 

environments fill all space between the uranyl layers. 

 Bond Valence Sum (BVS) analysis was performed on the structure to confirm the 

assigned uranium oxidation state of +6. All BVS values fall very close to 6, confirming 

the 6+ oxidation state of uranium. Table 8.3 compiles the BVS results. 

Sheet-Anion Structure and Topology 

 The structure of the uranyl sheet-anion is a distorted version of the β-U3O8 sheet 

structure and is created by the presence of the hydroxyl ion on the O(3) site. Both α- and 

β- U3O8, along with the sheet-anion of K5U5O17(OH), are shown in Figure 8.5. The 

hydroxyl ion causes an elongation of the U-O bond, which subsequently forces a rotation 

and distortion of the β-U3O8 U(3) octahedron (which is U(2) in K5U5O17(OH)). This
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Figure 8.4: Potassium Coordination in K5U5O17(OH). The potassium layer in 
K5U5O17(OH). K(1) ions form dimers, which serve to connect the K(2) infinite chains. 
The layer is completed by isolated K(3) polyhedra which fill the voids left by K(1) and 
K(2). Potassium is shown in maroon, oxygen in red, and hydroxyl ions in black. 
 

 

 

Table 8.3: Bond Valence Sum Results for K5U5O17(OH). 

 

 

 

 

 

 

 

Ion Bond Valence Sum Oxidation State 
K(1) 1.09 +1 
K(2) 0.99 +1 
K(3) 0.95 +1 
U(1) 5.94 +6 
U(2) 5.81 +6 
U(3) 5.87 +6 



www.manaraa.com

 227 

Figure 8.5: Comparison of K5U5O17(OH) with U3O8 Structures. The sheet-anion of α-
U3O8. B) The sheet-anion of K5U5O17(OH). C) The sheet-anion of β-U3O8. The sheet 
structure of B) is made of a combination of elements from A) and C). Oxide ions are 
shown in red, and hydroxyl ions are in black. Uranium ions in U3O8 are shown in steel 
blue while uranium ions in K5U5O17(OH) are shown in green for contrast. 
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distortion and rotation creates room for the insertion of an α-U3O8 type U(1) (also U(1) in 

K5U5O17(OH)) pentagonal bipyramid into the sheet. 

 As with other uranyl sheet-anions, the topological classification system described 

by Burns et al. can be used to describe the sheet structure 19. This classification system 

describes uranyl sheet-anions as being subdivided into one-dimensional chain structures. 

There are four major one-dimensional units that can be assembled into uranyl sheet 

structures, specifically P (pentagonal chains), R (rhombus chains), H (hexagonal chains), 

and U/D (directional variants of the same pentagon + triangular chains; ‘arrowhead 

chains’). 

 The distortion of the β-U3O8 sheet and insertion of the α-U3O8 structural unit 

causes K5U5O17(OH) to take on a different sheet-anion topology than α- or β- U3O8. The 

obvious place to start assigning a topology to the K5U5O17(OH) uranyl sheet is with the 

regular U(1) pentagonal bipyramid. Upon inspection, it is revealed that this pentagonal 

unit and neighboring triangular void is the U/D topological unit. In this instance, we 

begin with the D unit, though both are present and the choice can be made to start with 

either.  

 Moving to the –b direction, the next unit encountered is R, followed by distorted 

U and then D units, followed by an R unit and then a regular U unit. This U unit marks a 

mirror plane between the topological units, creating mirrored sequences; the cycle repeats 

at the next uniform D segment. This gives the sequence RUDRURDUR and creates the 

topology DRUDRURDUR…  Given that the D and U topological units are variants of the 

same unit, this topology consists of only two types of topological units: D/U and R. To 

the best of our knowledge, this topology has only been observed once before, in the 



www.manaraa.com

 229 

Na5U5O17(OH) analog, though the topology was not described using these units. Figure 

8.6 shows the sheet-anion structure of K5U5O17(OH) overlaid with a color mapping of the 

constituent topological units.  

Optical Properties 

 The UV-visible spectrum of K5U5O17(OH) consists of a large absorption band 

beginning at 550 nm and extending past our instrument’s measurement capabilities 

beyond 200 nm. There are four f-f transition bands observed on top of the large 

absorption feature. The absorption maximum occurs at 388 nm corresponding with one of 

the f-f transitions. The optical band gap was calculated to be 2.25 eV. Figure 8.7 shows 

the UV-Vis spectrum. 

 Fluorescence measurements were performed to measure the crystals ability to 

fluoresce under UV light exposure. The excitation spectrum was recorded from 200 – 450 

nm with an absorption maximum at 425 nm. This maximum was chosen to be the 

excitation wavelength for the emission spectrum, recorded from 450 – 900 nm. The 

emission spectrum shows a large feature corresponding to the emission maximum of 551 

nm. Figure 8.8 shows the fluorescence spectrum for K5U5O17(OH). 

 IR measurements were performed to confirm the presence of hydroxyl ions in the 

structure. Weak bands corresponding to O-H stretching modes were observed at 3317 and 

3256 cm-1. The weakness of the bands can be attributed to the very low concentration of 

hydroxyl ions per formula unit. The IR spectrum can be seen in Figure 8.9. 

Conclusions 

 A hydrothermal synthesis utilizing the low end of the supercritical temperature 

regime (400° C) was used to grow single crystals of K5U5O17(OH). The as-synthesized 
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Figure 8.6: Sheet-Anion Topology of K5U5O17(OH). The sheet-anion topology of 
K5U5O17(OH). D units are shown in red, U units are shown in blue, and R units are in 
grey. The sheet-anion structure is shown underneath the color map. Two repeating units 
(from left to right) are shown in this image. 
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Figure 8.7: UV/Visible Spectrum of K5U5O17(OH). The UV-visible absorption 
spectrum of K5U5O17(OH). The spectrum shows a sharp absorption edge at 550 nm and 
the fine structure corresponding to the U 5f – 5f electronic transitions can be seen above 
the absorption band. 
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Figure 8.8: Fluorescence Spectrum of K5U5O17(OH). The fluorescence spectrum of 
K5U5O17(OH). The excitation spectrum is shown in blue and the emission spectrum is 
shown in red. The sample was excited at a wavelength of 425 nm, corresponding to the 
excitation maximum. The emission maximum occurs at 551 nm. 
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Figure 8.9: IR Spectrum of K5U5O17(OH). The IR spectrum of K5U5O17(OH). a) The 
full range spectrum from 4000 cm-1 to 650 cm-1. b) A zoomed-in plot of the IR spectrum 
from 3600 cm-1 to 3200 cm-1. Plot b) highlights the weak O-H stretching bands. The 
weakness of the bands can be attributed to the low concentration of hydroxyl ions in the 
structure. 
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crystals were characterized by single crystal and powder X-ray diffraction, and the 

material was found to be isotypic with Na5U5O17(OH).  K5U5O17(OH) adopts a 

monoclinic three-dimensional structure consisting of two-dimensional uranyl sheet-

anions, whose topology was determined. The sheet-anion topology was found to be the 

same as the one found in the sodium analog, which had not been observed before in other 

uranyl materials. This work represents the first full topological analysis of this type of 

sheet-anion. K5U5O17(OH) was characterized using optical spectroscopy, and was found 

to have a large absorption band beginning at 550 nm. The fluorescence was measured and 

found to have an emission maximum of 551 nm, which is typical of uranyl materials.  
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CHAPTER 9 
 

EVIDENCE FOR A PERSISTENT PARAMAGNETIC GROUND STATE IN 
STRUCTURALLY RELATED U(IV) PHOSPHATES: SQUID MAGNETOMETRY AND 

NEUTRON DIFFRACTION* 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
*Adapted with permission from Felder, J. B.; zur Loye, H. –C. Inorg. Chem. 

(in preparation) 
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Introduction 

 The study of uranium containing materials is of great interest to society due to the 

problem with accumulating radioactive waste. 1–3 This waste is a product of nuclear 

weapons development as well as nuclear power production. In addition to the large 

amount of waste being generated by today’s nuclear power generation, there is also a 

substantial amount of legacy waste left over from Cold-War era nuclear weapons 

projects. 

 Unfortunately our level of understanding of uranium (the primary constituent of 

nuclear waste) crystal chemistry is insufficient to be able to design an effective new 

wasteform capable of safely sequestering nuclear waste for a meaningful amount of time. 

Therefore, before we can get to work designing new wasteform materials, we must first 

bolster our understanding of the fundamental chemistry behind uranium’s behavior in 

crystal lattices, as well as the properties of these crystals. 

 Uranium can exhibit a wide range of oxidation states (from +2 to +6), although 

only the +4 and +6 oxidation states are readily accessible in solid-state materials. 4 Even 

though both the IV and VI states are found in nature, by far the majority of the uranium 

chemistry literature focuses on U(VI) chemistry, which is dominated by the structure 

directing uranyl ([O=U=O]2+) ion. While uranyl chemistry is a rich field that continues to 

produce interesting new materials 5–7, the U(IV) ion has radically different properties 

which coupled with the relatively few number of reported materials makes it an attractive 

system to study. 

 Whereas the smaller U(VI) ion is fairly soluble, diamagnetic, and often 

fluorescent due to the uranyl ion, U(IV) is large, insoluble, paramagnetic, and has optical 
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properties dominated by f-f electronic transitions. Out of these properties, the magnetism 

of U(IV) is by far the most intriguing. U(IV) is a 5f2 system whose magnetism arises 

from a combination of spin-orbit interactions and crystal field effects. 8, 9 These spin-orbit 

effects are primarily due to low-lying thermal f excited states; these states can become 

depopulated as the temperature decreases. This thermal depopulation leads to formation 

of a diamagnetic singlet ground state, which is extremely prevalent among reported 

U(IV) materials. 10–13 

 Since the magnetism of U(IV) materials is also dependent on crystal field effects, 

it should be possible to influence the transition to the singlet state by tuning the crystal 

electric field. Of course, this is a notoriously difficult proposition, as chemists do not 

currently possess the ability to tailor coordination environments except in extremely 

specialized cases. However, herein we report the preparation and magnetic studies of 

three related uranium(IV) phosphates which have extremely similar structures and 

coordination environments, which gives us unique insight into the influence of 

coordination environment on U(IV) magnetism. 

Experimental 

Materials and Methods 

 The following materials were used as received with no further modification: 

UO2(CH3COO)2, FeF3, H3PO4, NH4H2PO4 and U3O8. UO2 was synthesized by reducing 

the U3O8 under a 4% H2 atmosphere at 650° C for 18 hours. The UO2 was confirmed 

pure by PXRD. 

Caution!! Even though the uranium precursors used in these syntheses are depleted, 

standard precautions and PPE for handling radioactive materials should be followed. All 
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work involving uranium was performed in labs specially designated for work with 

radioactive materials. 

 
UFPO4 was synthesized via mild hydrothermal reaction between uranyl acetate 

and phosphoric acid, with iron(III) fluoride acting as a fluoride source. The uranyl acetate 

and iron(III) fluoride were mixed with 1 mL of methanol in a 23 mL PTFE liner. 1 mL of 

concentrated phosphoric acid was added dropwise to the mixture, and the liner was sealed 

inside a stainless steel autoclave. The sealed autoclave was placed in a programmable 

oven which was heated to 200° C in one hour, then held for 24 hours. After holding, the 

oven was slowly cooled at a rate of 0.1°/minute to 40° C, at which point the oven was 

shut off. After cooling to room temperature, the autoclave was unsealed and the liner 

opened, revealing emerald-green product crystals and a green mother-liquor. The crystals 

were isolated by vacuum filtration and were washed thoroughly with water and acetone. 

U(UO2)(PO4)2 was synthesized by a flux-assisted solid-state reaction between 

P2O5 and UO2. The P2O5 was generated in situ by decomposing ammonium dihydrogen 

phosphate at 450° C. Stoichiometric amounts of UO2 and NH4H2PO4 were ground 

together in an agate mortar, producing an intimate mixture of powders. The powders 

were loaded into a fused silica tube, which was placed in a box furnace. The furnace was 

heated to 450° C in 12 hours, and was allowed to dwell for 24 hours. After dwelling the 

furnace was heated to 800° C in another 12 hours to ensure the slow removal of ammonia 

gas. The charge was held at 800° C for 24 hours after which point the furnace was shut 

off. The charge was then heated twice at 850° C with intermittent grinding, resulting in 

pure U(UO2)(PO4)2. Samples of U2O(PO4)2 were synthesized by reducing U(UO2)2(PO4)2 

under hydrogen at 650° C. 
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Single Crystal X-ray Diffraction 

 A suitable crystal of the green product was selected from the reaction products 

and X-ray intensity data were collected using a Bruker D8 QUEST diffractometer. The 

instrument utilizes an incoatec microfocus X-ray source (Mo Kα radiation, λ = 0.71073 

Å) and a PHOTON II CMOS area detector. The detector was operated in shutterless 

mode, and additional fast scans were collected to account for overtopped pixels during 

the initial data collection. The final unit cell parameters were determined by least squares 

refinement of a large set of reflections taken from the raw area detector frames. The data 

were reduced and corrected for absorption effects using the SAINT+ and SADABS 

programs. 14 An initial structural model was obtained using SHELXS 15 by direct 

methods, and subsequent least-squares refinements were performed with SHELXL 15 

through the OLEX2 16 graphical interface. 

 The observed lattice parameters were found to be very similar to NpFPO4, which 

was previously reported by Albrecht-Schmitt. The measured crystal was determined to be 

isostructural with NpFPO4, crystallizing in the orthorhombic space group Pnma. The data 

refined well to an R1 value of 1.76%. The largest peak and hole are 2.30 and -1.98 e-/Å3 

respectively. Selected crystallographic and refinement information for UFPO4 can be 

found in Table 9.1. 

Powder X-ray Diffraction 

 PXRD patterns were collected on a Rigaku Ultima IV diffractometer which 

utilizes Cu Kα radiation (λ = 1.5418 Å) and a d/Tex Ultra high speed detector. Patterns 

were collected in the angular range of 5°-65° 2θ with a step size of 0.02°. 
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Table 1: Crystallographic and Refinement Data for Compound 9.1 
Empirical Formula F O4 P U 
Formula Weight 352.00 g/mol 
Temperature 310.52 K 
Crystal System Orthorhombic 
Space Group Pnma 
a 8.6377(2) 
b 6.9826(2) 
b 6.3607(2) 
Volume 383.637(19) Å3 
Z 4 
Density 6.095 g/cm3 
Absorption Coefficient 42.636 mm-1 
F(000) 592.0 
Crystal Size 0.078 mm x 0.076 mm x 0.022 mm 
Wavelength 0.71073 Å 
2θ range for data collection 7.958° to 72.624° 
Reflections Collected 32820 
Independent Reflections 987 
Data/Restraints/Parameters 987/0/41 
Goodness of Fit on F2 1.492 
Final R Indices (all data) R1 = 0.0176; wR2 = 0.0428 
Largest Diff. Peak and Hole 2.30/-1.98 e-/Å3 
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Neutron Powder Diffraction 

 NPD patterns of UFPO4 and U(UO2)(PO4)2 were collected on beamline HB-2A 

(POWDER) at ORNL’s HFIR site. Patterns were collected using a bank of 44 3He 

detectors. Data were collected in the 3°-130° 2θ range with a step size of 0.05°. Magnetic 

contributions were probed using neutrons with a wavelength of 2.41 Å to obtain good 

resolution at low Q. Data for structural refinements were obtained using a wavelength of 

1.54 Å at room temperature from 3° to 160° 2θ. 

Thermogravimetric Analysis 

 Thermal properties were probed using TGA under flowing N2 or H2 (5% in 95% 

N2;100 mL/minute) from room temperature to 800° C or 900° C. The thermal products 

were characterized by PXRD and were used to guide the rational syntheses of U2O(PO4)2 

and U(UO2)(PO4)2.  

SQUID Magnetometry 

 Magnetic and inverse magnetic susceptibility data were collected using a 

Quantum Design MPMS3 SQUID magnetometer. Data were collected under an applied 

field of 0.1 T in the 2 K – 400 K temperature range. The data were corrected for shape 

and radial offset effects using previously described methods. 17 

Results and Discussion 

Powder X-ray Diffraction 

 Each of the synthesized compounds were characterized by PXRD for 

confirmation of purity and identity of the material. PXRD patterns of UFPO4, U2O(PO4)2, 

and U(UO2)(PO4)2 are shown in Figure 9.1. 
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Figure 9.1: PXRD Patterns of Materials 9.1-9.3. The PXRD patterns of UFPO4 (left), 
U(UO2)(PO4)2 (middle), and U2O(PO4)2 (right). The observed patterns are shown in red, 
while patterns calculated from the CIF’s are shown in black. For UFPO4, the CIF was 
obtained from the single-crystal structural refinement, while the other CIF’s were 
obtained from the ICSD. In all cases, there is good agreement between the observed and 
calculated PXRD patterns, indicating a high degree of bulk purity. 
 

 



www.manaraa.com

 246 

Synthesis of UFPO4 

 Although the mild hydrothermal method has proven extremely effective at 

synthesizing new uranium fluorides, the abundance of aqua ligands available in these 

systems frequently results in hydrated materials, which limit thermal stability and make 

certain characterization techniques such as neutron diffraction quite difficult. In order to 

avoid this, a solvothermal approach using a methanol/phosphoric acid solution was 

employed to limit the amount of water available to the system. In addition, the solubility 

of many metal species is less in methanol than in water, and so we expect to observe 

different crystalline products upon switching solvent systems. 

 Using concentrated HF (48%) would introduce a large amount of water to the 

system, and so alternate sources of fluorine were used. We investigated the use of alkali 

and alkaline earth metal fluorides as soluble fluorine sources, however the introduction of 

these materials resulted consistently in U3F12 • H2O, a previously reported phase. We 

hypothesize that the reduction of U(VI) to U(IV) happens quickly, and the U(IV) 

subsequently grabs the available F- ions and crashes out the stable U3F12 • H2O phase. By 

introducing the less soluble (slow-release) FeF3 as a fluorine source, we ensure that the 

U(IV) has time to interact with other cations in solution (i.e. phosphorous) before being 

fluorinated and crystallizing. This method proved successful, and the anhydrous UFPO4 

resulted from these synthetic trials. 

Crystal Structure of UFPO4 

 UFPO4 is a three-dimensional structure built of cross-linked uranium oxyfluorides 

chains. Phosphate groups serve as an additional linkage between the chains. The chains 

are built primarily of UO6/2F2/2 8-coordinate polyhedra. The local environment of U as 
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well as one chain unit are shown in Figure 9.2. Each uranium ion is coordinated by 6 

oxygen and 2 fluorine ions. Four of the oxygen lie in an equatorial plane and form to 

connect the polyhedra into chains via edge sharing. The remaining two oxygen and two 

fluorine ligands lie in a perpendicular plane with the fluorine ions arranged roughly trans 

to one another. Each chain is decorated with phosphate tetrahedral such that all oxygen 

atoms are shared between uranium and phosphorous. Figure 9.3 depicts the phosphate 

decorated uranium chain, and shows how two chains are bridged by phosphate tetrahedra 

in the [c] direction. 

 The tetrahedral nature of the phosphate groups mean that the chains shown in 

Figure 9.3 are connected into sheets that are corrugated. These corrugated sheets are 

connected in the [a] direction by a combination of phosphate and fluoride bridging 

groups. Figure 9.4 shows the connectivity in the [a] direction. Figure 9.5 shows the 

complete structure viewed down the [b] direction in order to visualize the connectivity of 

uranium chains. Figure 5 shows an alternate complete view of the structure viewed down 

the [c] axis. 

Thermal Behavior of UFPO4 

 The thermal properties of UFPO4 were initially investigated by heating to 800° C 

under nitrogen flow. The TG curve a smooth weight loss beginning immediately on 

heating which levels off at 800° C, seen in Figure 9.7. After heating, the resulting powder 

was analyzed via PXRD and found to consist of a mixture of U2O(PO4)2 and other 

unidentified phases. The primary phase was U2O(PO4)2, which was found to be closely 

related to UFPO4 structurally, and so attempts were made to isolate a pure sample of 

U2O(PO4)2. This was initially attempted by heating the UFPO4 sample to
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Figure 9.2: Local Environments of U in Compound 9.1. The infinite uranium 
oxyfluorides chains that make up the structure of UFPO4 (left). Each uranium polyhedron 
(right) shares two edges of oxygen ligands to form the infinite chains running along the 
[b] direction. Uranium are shown as green polyhedra, oxygen as red spheres, and fluorine 
as green spheres. 
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Figure 9.3: Infinite Uranium Chains in Compound 9.1. Edge sharing uranium chains 
decorated by phosphate tetrahedra. The chains are connected along the [c] direction 
forming ‘sheets’ of linked chains. The (apparently) unbounded phosphate oxygen shown 
here will serve to bridge these sheets along the [a] direction. Uranium are shown as green 
polyhedra, phosphorous as orange tetrahedral, oxygen as red spheres, and fluorine as 
green spheres. 

Figure 9.4: Bridging of Chains in Compound 9.1. A tetranuclear cluster of uranium 
polyhedra bridged by a phosphate tetrahedron. This illustrates how the uranium 
oxyfluorides chains (running along the [b] direction) are connected in the [a] direction by 
fluoride bridges, and both in the [a] and [c] directions by phosphate bridges. Uranium are 
shown as green polyhedra, phosphate as orange polyhedra, oxygen as red spheres, and 
fluorine as green spheres. 
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Figure 9.5: [b] Axis View of Compound 9.1. The overall structure of UFPO4 as viewed 
down the [b] axis. The uranium chains running along the [b] direction are bridged in the 
[c] direction only by phosphate groups, while they are bridged in the [a] direction by both 
phosphate groups and fluoride ligands. Uranium are shown as green polyhedra, 
phosphorous as orange polyhedra, oxygen as red spheres, and fluorine as green spheres. 
 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

 251 

Figure 9.6: Overall View of Compound 9.1. A view of UFPO4 down the [c] axis. This 
view of the structure accentuates the presence of the infinite uranium oxyfluorides chains 
running parallel to the [b] direction. Uranium polyhedra are shown in green, phosphorous 
in orange, oxygen as red spheres, and fluorine as green spheres. 
 

Figure 9.7: TGA to 800° C Under N2 Flow of Compound 9.1. The TG curve of UFPO4 
from room temperature to 800° C under a N2 gas flow. UFPO4 loses weight continuously 
until 800° C at which point it levels out. 
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900° C in the hopes that the higher temperatures would drive the transformation to 

completion, however this resulted in another structurally related phosphate, 

U(UO2)(PO4)2. The TG curve to 900° C is shown by Figure 7. The second attempt 

involved heating UFPO4 under a hydrogen atmosphere at 800° C. This TG curve is 

shown in Figure 9.9, and results in primarily U2O(PO4)2, however some small impurity 

phases remain. Figure 9.10 shows the post-TGA XRD patterns for the three discussed 

TGA runs. As both U2O(PO4)2 and U(UO2)(PO4)2 are understudied, we set to developing 

syntheses for pure samples of both materials. 

Synthesis of U(UO2)(PO4)2 

 In order to synthesize the uranium uranyl phosphate material, we made use of a 

previously reported flux-assisted solid-state synthesis. 18 In this method, stoichiometric 

amount of UO2 and NH4H2PO4 were combined in a fused silica tube. The charge was 

heated according to the profile given in the experimental section. This profile first forms 

P2O5 at 450° C as the ammonia and water vapor are driven off of the phosphate. Finally, 

the charge is heated to 800° C which renders the P2O5 molten allowing it to react 

effectively with the uranium. This initial reaction yields unidentified intermediate phases. 

After the initial heating phase, the intermediate mixture is ground and treated to two 

heatings at 850° C with an intermediate grinding, which converts the charge to pure 

U(UO2)(PO4)2. The PXRD pattern confirming purity and completeness of the reaction 

can be reviewed in Figure 9.1. 

Synthesis of U2O(PO4)2 

 Since all three reported uranium phosphates are structurally related, it makes 

sense that interconversion between phases should be possible. U2O(PO4)2 contains only
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Figure 9.8: TGA to 900° C Under N2 Flow of Compound 9.1. The TG curve of UFPO4 
up to 900° C under flowing N2, followed by a 12 hours isothermal hold at 900° C. UFPO4 
loses weight until 900° C, at which it begins to pick up weight presumably corresponding 
to the oxidation of one U atom from IV to VI. 
 

Figure 9.9: TGA to 800° C Under H2 Flow of Compound 9.1. The TG curve of UFPO4 
from room temperature to 800° C under a 4% H2 atmosphere. UFPO4 loses weight again 
to 800° C at which point it begins to stabilize. 
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Figure 9.10: Post-TGA PXRD Patterns of Compound 9.1. The post-TGA XRD 
patterns of UFPO4 after various thermal treatments. The PXRD after heating to 800° C 
under N2 (left) shows a transformation to U2O(PO4)2 plus unidentified phases. After 
heating at 900° C for 12 hours under N2 (middle), the primary products are 
U(UO2)(PO4)2, U3P2O12, and UO2(H2PO4)2 • H2O (which likely formed after picking up 
water once the furnace was shut off). Finally, heating at 800° C under 4% H2 (right) 
formed primarily U2O(PO4)2. Judging by the sharper peaks as compared to the left 
pattern, this sample of U2O(PO4)2 is more crystalline. 
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one less O ion than U(UO2)(PO4)2, and so we hypothesized that it should be possible to 

reduce U(UO2)(PO4)2 to form the U2O(PO4)2 phase. To test this, freshly made 

U(UO2)(PO4)2 was heated under a 4% H2 flow at 650° C for 18 hours. This resulted in a 

pure sample of U2O(PO4)2 as evidenced by the PXRD pattern in Figure 9.1. 

Structural Comparison of U2O(PO4)2 and U(UO2)(PO4)2 with UFPO4 

 Although the structures of U2O(PO4)2 and U(UO2)(PO4)2 have been reported 

elsewhere 18 19 (ICSD numbers 402120 and 75358 respectively), they will be discussed 

briefly here in the context of comparing them to UFPO4. U2O(PO4)2 is most similar to 

UFPO4, with a nearly identical structure. Conceptually, doubling the unit cell of UFPO4 

in the c direction (resulting in U2F2(PO4)2) for charge balancing reasons, then replacing 

the two fluoride ions with one oxide ion will result in U2O(PO4)2. Effectively, this 

transformation reduces the coordination number of uranium from 8 to 7 and results in a 

slight rearrangement of the uranium chains from an eclipsed to a staggered arrangement. 

Figure 9.11 shows the comparison between UFPO4 and U2O(PO4)2. 

 U(UO2)(PO4)2 is another related structure whose difference from UFPO4 and 

U2O(PO4)2 is primarily a consequence of the oxidation of half of the U atoms from IV to 

VI. This half-oxidation of the uranium results in charge-ordering where the uranium 

atoms are arranged in dimers: alternating U4+-U4+-U6+-U6+-U4+-U4+ and so on. All of the 

U atoms remain in a 7-coordinate environment, however the polyhedron changes from a 

somewhat irregular UO7 polyhedron in U2O(PO4)2 to a fairly regular pentagonal 

bipyramid (as would be expected from the uranyl ions) in U(UO2)2(PO4)2. The 

assignment of U(IV) vs U(VI) can easily be made by finding the uranyl bonds (1.7 Å in 

this structure) vs the axial bonds of U(IV) (2.1 Å here). Structurally, the oxidation of one
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Figure 9.11: A side by side comparison of UFPO4 (left) with U2O(PO4)2 (right). The 
primary structural consequences of the transformation are the lowering of uraniums 
coordination number from 8 to 7, and the rearrangement of the uranium chains. This 
rearrangement is primarily due to the decreased CN which removes half of the interchain 
U-U bridges (through F in UFPO4, O in U2O(PO4)2). Uranium is shown in green, 
phosphate in orange, oxygen in red, and fluorine in light green. 
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of the uranium atoms have fairly major consequence: primarily the loss of U-O-U 

interchain bonding, which is a result of the now inert uranyl oxygens which cannot form 

the connection. The phosphate tetrahedra are still present in a more or less unchanged 

location and still serve to connect the uranium chains. All three reported structures are 

shown in comparison in Figure 10. 

Magnetic Susceptibility of UFPO4, U2O(PO4)2, and U(UO2)(PO4)2 

 Since U(IV) is a 5f2 magnetic ion, we expect both crystal-field and spin-orbit 

effects to contribute meaningfully to the magnetic moment. This coupled with the close 

similarity of the three reported structures gives a unique opportunity to probe how small 

changes in coordination environment effect the magnetism of U(IV). In UFPO4, there are 

multiple possible magnetic exchange pathways: U-O-U interactions through edge shared 

members of the uranium chains, U-F-U interaction between chains, and U-O-P-O-U 

super-superexchange interactions between chains. In U2O(PO4)2 these interactions are 

slightly simplified as half of the U-F-U interactions (now additional U-O-U) have been 

removed by the doubling of the c axis. Finally, U(UO2)(PO4)2 removes the U-O-U 

interchain interaction altogether, as well as removes long-range U-O-U intrachain 

interactions, as the chains are interrupted by diamagnetic uranyl ions. The primary 

magnetic interactions in this material are U-O-U dimer interactions. These dimers can 

interact via super-superexchange through phosphate groups along the [a] axis. 

 The magnetic susceptibility of all three materials are shown in Figure 11. All 

three materials exhibit an increase in susceptibility at low temperatures, to varying 

degrees. UFPO4 shows the most dramatic increase and is reminiscent of a paramagnet, 

while the upturns in U2O(PO4)2 and U(UO2)(PO4)2 are more subtle. This behavior is not
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Figure 9.12: Comparison of Structures 9.1-9.3. A comparison of UFPO4 (top), 
U2O(PO4)2 (middle), and U(UO2)(PO4)2 (bottom). in U(UO2)(PO4)2 there are two uranyl 
ions which alternate with two U(IV) ions. U(IV) is shown in green, U(VI) in yellow, 
phosphorous in orange, oxygen in red, and fluorine in light green. 
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Figure 9.13: Magnetic Susceptibilities of Compounds 9.1-9.3. The magnetic 
susceptibilities of UFPO4 (dark green), U2O(PO4)2 (brown), and U(UO2)(PO4)2 (light 
green). The susceptibilities have been normalized to represent the magnetic susceptibility 
per U(IV) ion so that values can be directly comparable. 
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consistent with the singlet ground state that is common among U(IV) materials, although 

the exact nature of the magnetism is not well understood based off the SQUID data alone. 

For this reason, neutron diffraction was performed in order to probe the potential for 

magnetic order. 

 U(IV) notoriously does not obey the Curie-Weiss law in many cases, which 

makes obtaining an effective moment somewhat difficult. In order to determine effective 

high temperature moments, a plot of 2.827(χm • T)½ vs T was generated (Figure 9.14). 

This plot yields effective moments of 4.2 μB/U for UFPO4, 2.9 μB/U for U2O(PO4)2, and 

2.7 μB/U for U(UO2)(PO4)2. U(IV) typically displays moments of 3.5-3.9 μB, meaning 

these values are slightly outside the reported ranges (although this is not unusual). This 

exemplifies the great effect that small changes in crystal fields can have on 5f magnetic 

systems. 

Magnetic Neutron Diffraction of UFPO4 and U(UO2)(PO4)2 

The neutron diffraction data has been collected, however is still being analyzed. The 

diffraction data shows no evidence for long-range magnetic order. Complete analysis of 

the neutron data will be included in the final version. 

Conclusions 

 Interestingly, the SQUID data seems to indicate that UFPO4, with its higher 

coordination number and large number of magnetic exchange pathways exhibits a clear 

retention of a paramagnetic state down to below 2 K. This is coupled with a magnetic 

moment that is higher than we expect based on previously reported moments for U(IV). 

 It is difficult to draw any meaningful conclusions from comparing U2O(PO4)2 and 

U(UO2)(PO4)2 due to multiple structural differences between the two, however they both
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Figure 9.14: Moment vs Temperature Plots of Materials 9.1-9.3. χm•T vs T plots for 
UFPO4 (dark green), U2O(PO4)2 (brown), and U(UO2)(PO4)2 (light green). The moments 
decrease with decreasing temperature, consistent with a loss of thermally excited f states, 
however the moments never reach 0. 
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clearly exhibit moments almost a full Bohr magneton lower than the expected values. 

Despite the lack of a clear trends, it is obvious from this study that the coordination 

environment of uranium plays a clear role in the magnetic behavior of uranium materials. 
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CHAPTER 10 

BREAKING A PARADIGM: OBSERVATION OF MAGNETIC ORDER IN THE PURPLE 
U(IV) PHOSPHITE: U(HPO3)2 * 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

*Adapted with permission from Felder, J. B.; Smith, M. D.; zur Loye, H. –C. Inorg. 

Chem. (submitted)
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Introduction 

 Research into the crystal chemistry of uranium-bearing materials is of great 

importance due to the large amount of existing radioactive waste that was generated by 

the United States during the Cold War era, as well as due to the waste that continues to be 

generated by the United States and other countries involved the production of electricity 

from nuclear reactions. 1–3 This need for new waste storage materials (as well as new 

advanced fuel rod materials) drives several research directions 4–10.  In addition, however, 

uranium-containing materials intrinsically possess fascinating chemistry and, thus, there 

is also significant interest in examining the fundamental behavior and properties of this 

and other 5f elements. 11–14 

 One such fundamental property is magnetism, where the 5f elements display 

unique magnetic behavior due to the extent of their f orbitals. 15 In the 3d transition 

metals, strong crystal field effects efficiently quench the orbital angular momentum and 

the measured magnetic moments reflect the spin-only component.  By contrast, in the 4f 

lanthanides with limited 4f orbital extent, the crystal field effects are weak and allow for 

strong spin-orbit coupling. In the actinide elements an intermediate situation is found 

with spin-orbit coupling effects strong enough to be observed, yet with sufficient orbital 

extent to make crystal-field effects important. 15 

 Uranium can exhibit a wide range of oxidation states (+2 to +6), with all of the 

oxidation states except +6 showing paramagnetic behavior. All of the possible oxidation 

states have been observed 16–19, although only the +4 and +6 states are prevalent in 

extended solid-state materials.  The +5 state exists20, but is rare, as is the +3 state, which 

is typically not observed in oxide structures. Uranium in the +4 oxidation state is 
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commonly found in large coordination environments (CN > 7) 21, 22 and exhibits 

paramagnetic behavior due electrons located in low-lying 5f excited states. 15, 23 These 

excited f orbital states can become thermally depopulated at low temperatures, which 

leads to a magnetic moment that approaches zero with decreasing temperature as a singlet 

state is attained. 24–26 This singlet ground state is overwhelmingly prevalent among 

reported U(IV) materials 25, 27, and cases where paramagnetism persists to low 

temperatures (< 5 K) are exceedingly rare. 28 Cases where low temperature magnetic 

behavior is reported in the literature are often convoluted by the presence of multiple 

magnetic ions 21, 29, 30 (often transition metals) which can obscure the behavior of the 

uranium.  Despite these difficulties it is possible to observe a trend in the magnetic 

properties of U(IV) containing materials reported in the literature, namely that as the 

coordination number of the U(IV) ion decreases, the attainment of the non-magnetic 

singlet state drops to lower temperatures and even goes away. 25, 28 

 In a 5f system where both crystal-field and spin-orbit effects are important, it is 

reasonable to presume that the presence or absence of this singlet state can be influenced 

by the crystal field experienced by the U(IV) ion. Unfortunately, the ability to “tune” 

crystal fields by adjusting the crystal structures is notoriously difficult and is limited by 

our ability (or inability) as chemists to synthesize specific structure types.  

 It is well known, however, that the anion (ligand) surrounding a metal center 

strongly influences the crystal field effect, suggesting that by selecting specific anionic 

species to coordinate to the uranium it is possible to influence the crystal field, and thus 

the magnetism. A search of the literature reveals this to be the case, as uranium 

chalcogenides and pnictides have been reported to display magnetic ordering. 31 
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 With the retention of a triplet state down to low temperatures, the potential for 

long range magnetic ordering arises. Outside the world of intermetallics, there is a dearth 

of evidence for magnetically ordered extended uranium structures in the literature, and 

the few reported cases are simple binary or ternary chalcogenides and pnictides such as 

the ferromagnetic phases UQ, U3Q4, and U2Q3, U3Q5 (Q = S, Se, Te) 30, 31, and the 

antiferromagnets UN32, UP33, and UP2. 34 Herein, we report the synthesis and 

characterization of a new uranium phosphite with an unusual purple color that exhibits 

long-range magnetic interactions at low temperatures.  

Experimental 

Materials and Methods 

 The following materials were used as received without further modification: 

UO2(CH3CO2)2 (ACS Grade, International Bio-Analytical Laboratories, Inc.), Na4P2O7 

(99+%, Acros Organics), H3PO2 (50% in H2O, Sigma Aldrich), and methanol. 

Caution!!! Even though the uranium used in this synthesis is depleted, standard safety 

precautions for handling radioactive materials should be observed. All work with 

uranium was performed in labs specifically designated for work with radioactive 

materials. 

 
 The uranyl acetate and sodium pyrophosphate were mixed in a 23 mL PTFE liner 

with 1 mL of methanol in a 1:1 molar ratio. 1 mL of hypophosphorous acid was added 

slowly, and then the liner was sealed within a stainless steel autoclave. The autoclave was 

placed in a programmable oven which was heated to 200° C in one hour, then left at the 

target temperature for 24 hours. After dwelling, the oven was programmed to cool to 40° 
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C at a rate of 0.1°/minute. Once at 40° C the oven was shut off and allowed to come to 

room temperature.  

 Once cool, the autoclave was opened revealing colorless mother liquor with a 

suspended blue powder over a denser purple colored powder. The entire charge was 

decanted into a beaker and mixed with 100 mL of water. The beaker was placed in an 

ultrasonic bath for 5 minutes, which was sufficient to suspend all of the blue powder. The 

aqueous blue suspension was decanted off revealing small purple crystals. The crystals 

were collected by vacuum filtration and were washed thoroughly with water and acetone. 

The blue suspension was collected by vacuum filtration separately, and was washed with 

acetone. The yield was found to be approximately 20% purple U(HPO3)2 and 80% 

unknown blue phase, based on uranium. Despite the low yield, the materials are easily 

separable and typically results in ~100 mg of purple U(HPO3)2 per synthesis. 

Single-Crystal X-ray Diffraction 

 X-ray intensity data were collected from a pale purple-colored plate using a 

Bruker D8 QUEST diffractometer. The D8 utilizes an Incoatec microfocus source (Mo 

Kα radiation, λ = 0.71073 Å) and a Photon II CMOS area detector. The detector was 

operated in shutterless mode and additional fast scans were collected to account for 

overtopped pixels. The raw area detector frames were reduced and corrected for 

absorption effects using the SAINT+ and SADABS programs. 35 Initial structural models 

and subsequent least-squares refinements were performed with the SHELX package, 

through the OLEX2 GUI. 36, 37 

 Crystals of the compound diffracted well to very high resolution, but achieving a 

correct solution was not straightforward. Examination of the intensity data showed no 



www.manaraa.com

 270 

systematic absences, leaving 16 possible space groups.  Rint values did clearly 

discriminate between likely Laue groups. For structure solution, space group P-3 was 

selected, a solution obtained, and then the ADDSYM program in PLATON was used to 

search for missed symmetry. This procedure eventually resolved at P-3m1 (No. 164), a 

centrosymmetric space group which, after inclusion of a merohedral twin law, yielded 

excellent refinement statistics and a physically reasonable structure. The dual-space 

solution program XT returned only space groups P3 and P-3 using default settings. There 

are four atomic positions in P-3m1: U1 (site 1a, symmetry -3m1), P1 (site 2d, symmetry 

3m.), O1 (site 6i, symmetry .m.) and H1 (site 2d). This model generates a composition of 

U(HPO3)2, with ...AB... stacking of PO3 layers, UO6 octahedra and two equivalent HPO3 

groups related by a center of symmetry per unit cell. The merohedral twin law [-100 / 0-

10 / 001], a two-fold rotation around [001] emulating the higher hexagonal symmetry was 

applied. This drastically improved the data/model fit, reducing R1/wR2 from ca. 0.09/0.22 

to the values reported. The H atom was located in the difference map, however refining 

both the H location and the isotropic displacement parameter resulted in an unstable 

refinement. The P-H bond distance was restrained to be 1.35 Å (based on P-H distances 

in the ICSD), which allowed the isotropic displacement parameter to be freely refined. 

The largest residual electron density peak and hole in the final difference map are +1.56 

and -0.87 e-/Å3. 

 During the several trial solution and refinement attempts, a crystallographically 

plausible but erroneous solution with reasonable refinement statistics was also obtained 

in the acentric space group P-6m2 (No. 182), with major structural consequences. There 

are three unique atoms in this model (U on site 1f, -6m2 symmetry; P on 2h, 3m. 
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symmetry; O on 6n, .m. symmetry). This solution features ...A... stacking of PO3 layers, 

generating UO6 trigonal prisms and eclipsed P2O6 groups with an apparent direct P-P 

bond (d(P-P) = 2.26(1) Å. The composition is UP2O6. The UO6 prisms and P2O6 groups 

are generated by the action of the -6 rotoinversion axis located at the U atom and at the 

centroid of the “P-P” bond. This model refined to R1 = 0.0240 / wR2 = 0.055 with 

difference map extrema of +3.09 / -4.54 e-/Å3, which are large but not abnormal for an 

actinide structure. The peaks and holes are located near the U atom and other chemically 

unremarkable positions. This model generated only three “C-level” alerts in CheckCIF. 

Interestingly, there is little indication from atomic parameters of the incorrectness of the 

model; no electron density hole at the phosphorus or oxygen sites or unusually enlarged P 

or O displacement parameters consistent with excess electron density. The unique P atom 

refines to 100% occupied within experimental error. Such a pernicious false minimum is 

primarily the result of the dominance of the uranium scattering factors on the data. Both 

models have similar F(000) values of 172 or 170 electrons. Of this, the uranium, one P 

atom, and one oxygen layer (three oxygen atoms), constituting 131 of the 172 total 

electrons per unit cell (76% of the total scattering) occupy positions common to both 

models. Only the remaining ~24% of the scattering power of the unit cell differs, and is 

apparently lost in the background. Table 10.1 lists relevant crystallographic refinement 

data, and Table 10.2 lists selected interatomic distances. 

Powder X-ray Diffraction 

 Powder X-ray diffraction patterns were collected on a Rigaku Ultima IV 

diffractometer (Cu Kα radiation, λ = 1.54 Å) equipped with a D/teX high speed detector. 

Patterns were collected in the 5° - 65° 2θ angular range with a step size of 0.02°.
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Table 10.1: Crystallographic and Refinement Data for U(HPO3)2 
Empirical Formula H2 O6 P2 U 
Formula Weight (g/mol F. U.) 397.98 
Temperature (K) 304(2) 
Wavelength (Å) 0.71073 
Crystal System Trigonal 
Space Group P-3m1 
a 5.6825(2) 
c 5.6692(2) 
Volume (Å3) 158.537(12) 
Z 1 
Density (kg/m3) 4.168 
Absorption Coefficient (mm-1) 26.060 
F(000) 172.0 
Crystal Size (mm) 0.08 x 0.073 x 0.073 
Two-Theta range for data collection 7.224 – 72.502 
Reflections 14791 
Independent Reflections 321 
Completeness 100% 
Data/Restraints/Parameters 321/1/15 
Goodness-of-Fit on F2 1.021 
Final R Indices R1 = 0.0119 wR2 = 0.0294 
Extinction Coefficient 26.200 
Largest Diff. Peak and Hole (e-/Å3) 1.59/-0.88 

 
 

Table 10.2: Selected Interatomic Distances (Å) and Angles (°) for U(HPO3)2 
U(1) – O(1) 2.234(3) 
P(1) – O(1) 1.510(3) 
P(1) – H(1) 1.347 
  
U(1) – O(1) – P(1) 161.7(2) 
U(1) – P(1) – U(1) 100.42 
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Optical Properties 

 The optical properties of both the blue phase and the purple U(HPO3)2 were 

investigated. UV/Visible absorption measurements were carried out using a PerkinElmer 

lambda 35 UV/Visible spectrophotometer (used in diffuse reflectance mode) equipped 

with an integrating sphere. Spectra were recorded in the range of 200 nm – 900 nm. The 

diffuse reflectance data was converted to absorbance internally by the instrument by use 

of the Kubelka-Munk function. 38 Infrared spectroscopy was performed using a 

PerkinElmer spectrum 100 FT-IR spectrometer with a diamond ATR attachment. IR 

spectra were recorded in the spectral range of 4000 cm-1 to 650 cm-1. Final IR spectra 

consist of 16 total averaged scans. 

Magnetic Properties 

 Magnetic property measurements were carried out using a Quantum Design 

MPMS3 SQUID magnetometer. Temperature dependent measurements were performed 

by conducting ZFC and FC temperature sweep from 2 K – 300 K under an applied 

magnetic field of 0.1 T. Field dependent magnetization measurements were performed at 

2 K by sweeping the applied magnetic field from -5 T to 5 T. The data were corrected for 

radial offset and shape effects by previously described methods. 39 Magnetic property 

measurements were carried out on both the blue phase and the purple U(HPO3)2.  

Thermogravimetric Analysis 

 TGA was performed on both samples in order to determine thermal stability. 

TGA was performed using an SDT Q600 TG-DSC under nitrogen flow (100 mL/min). 

The samples were loaded in alumina crucibles and heated to 900° C at 10°/minute. The 
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thermal products were analyzed by PXRD, UV/Vis, and IR spectroscopy using the 

methods and instruments described above. 

Results and Discussion 

Synthesis.  

Single crystals of U(HPO3)2 were obtained from a hydrothermal reaction 

involving uranyl acetate, sodium pyrophosphate, methanol and hypophosphorous acid.  

The purple crystals of U(HPO3)2, which form together with a secondary blue phase, can 

readily be isolated in pure form.  This phosphite is related compositionally to 

U(HPO3)2•2H2O, first reported by Albrecht-Schmitt 40, 41, however its structure is quite 

different. An optical photograph of the purple phase can be seen in Figure 10.1 contained 

in a steel PXRD sample holder. 

Crystal Structure 

 The structural building block of the U(HPO3)2 structure is the UO6 octahedron, 

which is formed by the insertion of U(IV) centers into octahedral holes created by two 

close-packed oxide layers. Each pair of oxide layers is separated by approximately 3 

angstroms, resulting in a van der Waals gap, thereby creating a true layered structure. 

Figure 10.2 shows a layer of UO6 octahedra resulting from the close-packed layers 

(Figure 10.2a), while Figure 10.2b illustrates the fact that the UO6 octahedra are not 

directly connected to each other. 

 The UO6 units are connected by hydrogen phosphite (HPO3) units that are located  

between the UO6 octahedra such that each HPO3 tetrahedron bridges three UO6 

octahedra. The phosphite tetrahedra are staggered so that three HPO3 tetrahedra (per UO6 

unit) are located in one oxide layer, while the other three HPO3 tetrahedra are located in
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Figure 10.1: Purple Color in U(HPO3)2. An optical photograph of U(HPO3)2 showing 
its unusual purple coloration. 
 

 

 

 

 

 

 

 

 

 
Figure 10.2: Two views of the UO6 layers resulting from oxide close-packing in 
U(HPO3)2. Uranium is depicted as purple polyhedra, and oxygen as red spheres. 
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the adjacent oxide layer. This causes the phosphite hydrogens to point into the van der 

Waals gap and to interdigitate with phosphite groups on adjacent layers. Figure 10.3 

shows the connectivity of one UO6 octahedron to six HPO3 tetrahedra and one complete 

U(HPO3)2 sheet. 

 The H atoms between the close-packed oxide layers are too far apart for strong H-

bonding interactions, with the closest H--O distances of ~3.1 angstroms. This suggests 

that the attractions between the U(HPO3)2 sheets are dipole-dipole and London dispersion 

forces.  The arrangement of structural units within the U(HPO3)2 layers is shown in 

Figure 10.4a and the stacking, interdigitation and the van der Waals gap between the 

U(HPO3)2 layers is illustrated in  Figure 10.4b. 

Optical Properties 

 The optical properties of U(HPO3)2 were examined and expected to be quite 

interesting due to the unusual purple color of the material. The UV/Visible absorption 

spectrum was found to consist of many weak absorption bands, presumably from f-f 

electronic transitions, however they are noticeably different from the spectra commonly 

observed in other U(IV) materials. This difference in absorption spectra explains the 

unusual purple color of the title compound. The UV/Visible spectrum is shown in Figure 

10.5.  The purple color, while unusual, is not the first report of a purple U(IV) oxide, as 

green K2USi6O15 undergoes a structure transition to a low temperature purple phase.   

 The infrared absorption spectrum, which can be seen in Figure 10.6, contains two 

prominent features: a broad intense band at 1000 cm-1 and a sharp, but weaker band at 

2500 cm-1. Both of these bands were assigned by comparison with other phosphite 

materials in the literature. The strong band at 1000 cm-1 is attributed to P – O stretching



www.manaraa.com

 277 

Figure 10.3: U(HPO3)2 Layers. Phosphite tetrahedra connect UO6 octahedra to form a 
U(HPO3)2 layer (left). The local environment of uranium extended to show bonding 
interactions with phosphite groups (right). Uranium is shown as purple polyhedra, 
phosphorous as orange polyhedra, oxygen as red spheres, and hydrogen as black spheres. 
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Figure 10.4: Overall structural depiction of U(HPO3)2. View of the [ab] plane showing 
the arrangement of structural units within the U(HPO3)2 layers (bottom). View of the [ac] 
plane, showing how the individual layers are stacked and the van der Waals gap between 
them (top). Uranium is shown as purple polyhedra, phosphorous as orange polyhedra, 
oxygen as red spheres, and hydrogen as black spheres. 
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Figure 10.5: The UV/Visible Absorption Spectrum of U(HPO3)2. The most prominent 
features are the multiple f-f absorption bands that range from ~350 – 900 nm. The large 
band below 350 nm represents the onset of the absorption band. 
 

Figure 10.6: The IR Spectrum of U(HPO3)2. The sharp band at 2500 cm-1 is 
representative of P – H stretching modes, and the intense bands at 1000 cm-1 represent P 
– O stretching modes. 
 

 

 



www.manaraa.com

 280 

modes, while the sharp band at 2500 cm -1 is attributed to P – H stretching modes, 

supporting the crystallographic evidence for HPO3 units in the structure. 

Powder X-ray Diffraction 

 The observed PXRD pattern was compared to the calculated pattern generated 

using the CIF from the single-crystal structural refinement. The observed and calculated 

patterns agree well, with no detectable extra peaks.  (Two small Kβ peaks can be seen at 

14.35° and 21.73° 2θ).  The narrow reflections indicate a high degree of crystallinity and 

the match with the CIF supports a phase-pure bulk sample with no noticeable impurities. 

The observed and calculated patterns are overlaid in Figure 10.7. 

Thermal Properties 

 It was expected that U(HPO3)2 would not exhibit a high degree of thermal 

stability, however thermogravimetric analysis in flowing N2 demonstrates that U(HPO3)2 

is surprisingly thermally stable up to roughly 500° C; heating the sample beyond 500° C, 

however, results in a complex sample transformation into the cubic U(IV) pyrophosphate 

phase, UP2O7. XRD data collected on samples heated to 500° C confirm the absence of a 

structural change, suggesting that the small, but continuous weight loss to about 400° C is 

the result of uncoordinated water loss.  The TGA curve is displayed in Figure 10.8. The 

transformation process starting at about 600 °C appears to consist of a weight loss 

followed immediately by a weight gain, the latter likely from oxygen or water impurities 

in the nitrogen stream.  Interestingly, this uptake of oxygen does not result in the 

oxidation of uranium from IV to VI, but instead oxidizes the phosphorous, which in this 

case acts a sacrificial reductant, changing from a formal oxidation state of P(III) in HPO3 

to P(V) in P2O7, apparently protecting the +4 oxidation state of uranium. Above 1000° C
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Figure 10.7: The PXRD Pattern of U(HPO3)2. The observed (red) and calculated 
(black) PXRD patterns of U(HPO3)2. The calculated pattern was obtained from the CIF 
generated from the single-crystal XRD refinement. The calculated and observed patterns 
agree well with no extra peaks. 
 
 
 

Figure 10.8: TGA of U(HPO3)2. The TGA curve from room temperature to 1100° C in 
N2 for U(HPO3)2. The initial weight loss was attributed to surface water, as PXRD 
revealed no structural change below 600° C. The initial weight loss of 0.372% is 
hypothesized to be from the loss of H from the phosphite groups. The subsequent weight 
gain of 1.27% is from the uptake of oxygen during the transition to UP2O7. The initial 
weight loss of 0.372% is slightly less than expected from the loss of 2 H atoms, 
potentially because the material begins picking up oxygen before the loss of H is 
complete. The weight gain of 1.27% is much less than the expected 8% for the uptake of 
oxygen, which we attribute to the further transformation of the material before the weight 
gain can be completed. 
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additional weight losses and gains can be observed and the powder XRD pattern consists 

of primarily UP2O7 alongside a number of additional small reflections that support the 

formation of one or more additional oxidized phases that could not be identified. Figure 

10.9 displays the post TGA XRD patterns. 

Magnetic Properties 

 There is no direct oxide bridge between uranium centers, however, the uranium 

centers are connected to each other via HPO3 tetrahedra, thereby forming a hexagonal 

honeycomb-type lattice, shown in Figure 10.10. In principle, this structure arrangement 

allows for magnetic uranium centers to couple with each other via super-superexchange 

interactions mediated by the phosphite groups; such magnetic coupling could potentially 

result in very weak magnetic interactions. 42, 43  Another consequence of the hexagonal 

lattice is that although there is only one type of magnetic ion present in U(HPO3)2 (U+4, 

5f2), the exchange interactions in such a hexagonal lattice typically result in strong 

geometric frustration. Geometric frustration can result from a triangular arrangement of 

spins that attempt to couple antiferromagnetically, a geometrically impossible 

(frustrating) arrangement.  

 Given the simplicity of the system (only one type of magnetic ion, and one type of 

possible exchange interaction), we surmise there are three possible magnetic archetypes 

that U(HPO3)2 could belong to. The first type (a) would be a non-magnetically ordered 

state where the U ions either do not order magnetically (remain paramagnetic) or the U 5f 

electrons pair and the system devolves into a diamagnetic singlet state (a common 

occurrence among U(IV) systems). The second magnetic archetype (b) would involve a 

pure ferromagnet, where all of the U spins are aligned. The final archetype (c) is an
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Figure 10.9: Post-TGA PXRD Pattern of U(HPO3)2. The post-TGA PXRD plots of the 
thermal products of U(HPO3)2. The black plot is the calculated pattern of UP2O7, 
obtained from the ICSD (number 81992). The red pattern is the PXRD taken after heating 
at 600° C. The large background at low angles is due to Fe fluorescence arising from a 
stainless steel sample holder. The green pattern is the PXRD pattern taken after heating at 
1100° C. The sample is noticeably more crystalline due to the more intense peaks, 
possible from an annealing effect. The presence of multiple peaks from unidentified 
phases are present at elevated temperatures. 
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Figure 10.10: Magnetic Lattice of U(HPO3)2. Simplified view of the U(HPO3)2 layers 
showing magnetic uranium (purple spheres) and super-superexchange mediating 
phosphorous (orange spheres). Bonding interactions between uranium and phosphorous 
are shown as light dashed lines (oxide bridges omitted for clarity), and super-
superexchange interaction pathways are shown as bold black lines. The magnetic lattice 
is constructed of triangular units (blue) which form hexagonal tiles (green), building the 
structure. 
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antiferromagnetic arrangement which, as discussed for this this system, would be 

magnetically frustrated. This frustrated magnetic arrangement should result in a small net 

magnetization caused by the failure of the U atoms to align perfectly 

antiferromagnetically. 

 The magnetic susceptibility (Figure 10.11) quickly rules out two of the three 

possible archetypes.  The magnetic susceptibility continues to increase even as the 

temperature reaches 2K, eliminating possibility (a).  The lack of an obvious intense 

ferromagnetic transition rules out (b).  (c) would seem consistent, as at 8 K there is a 

small jump (a positive deviation) in the ZFC and FC susceptibility data.  This is a very 

weak transition and below the transition the ZFC and FC data no longer overlay, a typical 

result of magnetic frustration.  This leads us to propose that U(HPO3)2 is a magnetically 

frustrated system and, since the deviation is positive, likely very slightly canted. This is 

an intriguing result, as examples of U atoms participating in long-range magnetic order 

are exceedingly rare in the literature.  To further test this hypothesis, the magnetization as 

a function of field was measured and found to display non-Curie-Weiss behavior and to 

exhibit a small magnetic hysteresis.  The measurements were repeated on several 

different batches of U(HPO3)2, consistently yielding the same transition. 

 U(HPO3)2 does not exhibit Curie-Weiss paramagnetic behavior, even at high 

temperatures, preventing the determination of a magnetic moment by fitting the data to 

the Curie-Weiss Law.  This suggests that, as for other U(IV) systems, there is a thermal 

decrease of f electrons in excited states, however, not enough to prevent magnetic 

coupling.  As is often reported in the literature, a room-temperature paramagnetic 

moment was obtained by taking the value of 2.827(χm•T)½ at 300 K. This value gives a 
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Figure 10.11: Magnetic Measurements of U(HPO3)2. (left) The low temperature 
magnetic susceptibility of U(HPO3)2 showing the magnetic transition at 8 K. The ZFC 
(open circles) deviates from the FC (closed points) below the transition. (middle) The full 
range magnetic susceptibility, highlighting the lack of transition to a singlet state and the 
non Curie-Weiss behavior of U(HPO3)2. (right) Magnetization versus Field 
measurements, the inset shows the low-field region where there is weak field dependence 
at 2 K. In the susceptibility plots, green data is magnetic susceptibility and red data is the 
inverse magnetic susceptibility. 
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moment of ~2.1 μB/U, which is significantly lower than magnetic moment values 

reported for U(IV) (3.58 μB) in the literature. Figure 10.12 shows the χmT vs T plot, and 

the inset confirms the magnetic transition an 8 K. The low observed moment is due to the 

fact that the uranium moment is not yet saturated, as has been observed in other oxides 

containing U(IV) in UO6 coordination environments. 28   

Blue Phase 

 The blue material that forms during the synthesis of U(HPO3)2, can easily be 

separated from U(HPO3)2, and studied.  Unfortunately, no single crystals suitable for 

diffraction were found in the product, and attempts to recrystallize the blue material 

failed. The PXRD pattern of the blue phase was found to have a nearly identical PXRD 

pattern as U(HPO3)2, with a slight but observable shift in the c lattice parameter. The c 

parameter of the blue phase is 0.03 Å smaller (cinitial = 5.4467(6) Å and cblue = 5.4156(10) 

Å [calculated by PXRD]) than the c parameter of U(HPO3)2; the a lattice parameters are 

identical within experimental error. The striking similarity of the patterns suggest that 

layers similar in structure to those of U(HPO3)2 are present in the blue phase, however the 

change in c lattice parameter suggests that the layers are slightly closer together. The 

PXRD pattern of the blue phase is shown for comparison with that of U(HPO3)2 in Figure 

10.13. This is corroborated by the IR spectrum of the blue phase, which shows a slightly 

broadened and depressed P – H stretching band, suggesting the presence of some H- 

bonding interactions. Unfortunately, with only laboratory powder X-ray diffraction data 

and without single-crystal diffraction data it is not possible to determine the origin of 

such a subtle structural difference. The UV/Vis spectrum is shown with U(HPO3)2 in 

Figure 10.14. The difference in the UV/Vis data between the blue and purple 
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Figure 10.12: Moment vs Temperature Plot of U(HPO3)2. The χmT vs T plot for 
U(HPO3)2. ZFC data is shown by green circles, and FC data as red circles. The moment is 
not yet saturated at 300 K, and gives an observed magnetic moment of 2.1 μB. The inset 
shows the low temperature region, highlighting the magnetic transition. 
 
 

Figure 10.13: PXRD Patterns of U(HPO3)2 and the Unknown Blue Phase. The PXRD 
patterns of U(HPO3)2 (red) and the unknown blue phase (green). The calculated pattern 
for U(HPO3)2 is shown in black. The blue material has an almost identical powder 
pattern, however the peaks are shifted slightly (which can be seen in the inset). The two 
small peaks to the left of the two largest U(HPO3)2 peaks (just under 10 degrees, and over 
20 degrees), are peaks resulting from residual Cu Kβ radiation. 
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Figure 10.14: Purple and Blue UV/Vis Spectra. The UV/Vis spectra of purple 
U(HPO3)2 (left) and the blue material (right) shown in comparison. The drastic difference 
between the two spectra suggests that the  coordination environment of the uranium is not 
identical in the two phases. 
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phases does, however, indicate that the uranium coordination environments in the two 

phases are not identical. The IR spectrum is shown in Figure 10.15. 

The magnetic susceptibility data of the blue phase indicate that the uranium f-

electrons also do not enter a singlet ground state by 2K, however, the magnetic transition 

exhibited by U(HPO3)2 is not observed in the blue material. This gives further credence 

to the fact that the blue material and U(HPO3)2 are structurally related, however distinctly 

different materials with different uranium coordination environments. A plot of the 

magnetic and inverse magnetic susceptibility of the blue material is shown in Figure 

10.16, and is shown overlaid with the susceptibility of U(HPO3)2, in Figure 10.17. 

Conclusions 

 A new purple U(IV) containing phosphite, U(HPO3)2, was prepared 

hydrothermally, its crystal structure determined and its physical properties investigated.  

This layered material consists of a van der Waal gap separated U(HPO3)2 sheets, exhibits 

unpaired magnetic electrons down to 2K, and exhibits a weak magnetic transition at 8K.  

It is hypothesized that the super-superexchange pathway via the linking PO3H units 

enables the uranium f-electrons to couple weakly and that the presence of the triangular 

sheet lattice structure leads to magnetic frustration.  We surmise that this unusual 

magnetic behavior arises from a combination of the oxygen coordination environment 

and the low coordination number of 6 for U(IV). 
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Figure 10.15: The IR Spectrum of the Blue Material. The IR spectrum of the blue 
phase shows intense P-O stretching modes as well as a broadened and depressed P-H 
stretching mode at 2500 cm-1. 
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Figure 10.16: Magnetic Susceptibility of the Blue Phase. The magnetic susceptibility 
(green) and inverse magnetic susceptibility (red) of the unknown blue phase. Although no 
transition to a magnetically ordered state is observed, this material does appear to remain 
in a magnetic triplet state through 2 K. No Curie-Weiss fit could be obtained as the 
formula weight is unknown and so the extracted values would not be a true indication of 
the properties of the material. ZFC data is shown by open circles, FC data as closed 
points. 

 
Figure 10.17: Magnetic Susceptibilities of U(HPO3)2 and the Blue Material. A 
comparison between the magnetic susceptibilities of U(HPO3)2 (dark green) and the 
unknown blue material (light green). Although the absolute values of the susceptibility of 
the blue phase are inherently incorrect (by virtue of the fact that the formula weight is 
unknown), the values were estimated by assuming the formula weight to be 398 g/mol 
(similar to U(HPO3)2). The behavior the magnetism is quite different, giving credence to 
the fact that the materials are distinct. 
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